
A Better Mythology for System Design

Jed Harris
Pliant Research

978 Cragmont Ave.
Berkeley, CA 94708

+1 510 524 4350
jed@pliant.org

Austin Henderson
Pliant Research

PO Box 334
La Honda, CA 94020

+1 650 747 9201
henderson@pliant.org

ABSTRACT
The past decades have seen huge improvements in
computer systems but these have proved difficult to
translate into comparable improvements in the usability and
social integration) of computers. We believe that the
problem is a deeply rooted set of assumptions about how
computer systems should be designed, and about who
should be doing that design.

Human organizations are continually evolving to meet
changing circumstances of resource and need. In contrast,
computers are quite rigid, incapable of adaptation on their
own. Therefore when computer systems are incorporated
into human organizations, those organizations must adapt
the computers to changing circumstances. This adaptation
is another human activity that technology should support,
but our design philosophies are oddly silent about it.

This paper explores the origins of these problems in the
norms developed for managing human organizations,
proposes partial solutions that can be implemented with
current systems technology, and speculates about the long-
term potential for radical improvements in system design.

Keywords
System evolution, accommodation, mythology, pliant
systems.

PROBLEM
The social value of computing is so great that use of
computers in developed countries is already pervasive and
well on its way to becoming universal. Computer systems
are increasingly part of our interaction with most
companies and many individuals; indeed, they shape our
experience in these interactions.

From 1980 through 1998, the performance of personal
computers has increased by at least a factor of 1000, and
the size of typical personal computer applications has
increased by about a factor of 16. Communication between
computers has speeded up by a factor of more than 400,
and changed from a difficult, occasional act to a largely
transparent and often continuous process.

However, in spite of the enormous improvements in
computer performance and functionality, computers, both

personal and institutional, are still very difficult for most
people to use, and are becoming more, rather than less,
difficult to manage as they become more complex.

Institutional computer systems present apparently
intractable problems of ossification, as highlighted by the
recent “Year 2000” problem, and the spectacular failure of
multi-million dollar projects to upgrade the US air traffic
control system, the Internal Revenue Service, and major
systems at the Bank of America, among many others [2].

Even when institutional systems are “successful”, they
often cause serious problems. For example, while
workflows mechanized by computers may be greatly
accelerated and made more reliable, they are also largely
“frozen”. Because they are often frozen before experience
is gained they are often wrong from the start. Because the
world changes, the frozen workflows tend to quickly
diverge from the real demands of the business process.

Personal computer systems are subject to another sort of
ossification. Most people have great difficulty updating
their computer systems, or figuring out how to fix them if
an update goes wrong. People become very cautious about
changing or updating their environment, with good reason.
As a result, users are trapped in a network of assumptions
and practices that they cannot easily change.

Because computer systems are pervasive, on the way to
becoming universal, the social effects of these problems
with computing are also pervasive and will be universal.
This is a situation that deserves deeper consideration.

Why are we having such a hard time?
Fortunately, there is a research community of computer
scientists, designers, cognitive scientists, and others, who
are working on the general problem of “making computers
easier to use.”

Unfortunately, this research effort is not moving nearly as
quickly as the underlying technology. While our hardware
technology has improved by orders of magnitude, and our
software has grown comparably more complex, the
relationship between people (individually or in groups) and
computers has only improved incrementally. In some
cases, it has even deteriorated.

Why have the huge improvements in computer systems
proved so difficult to translate into comparable
improvements in the usability (and more generally, the
social integration) of computers? We believe that the
problem is a deeply rooted set of assumptions about how

computer systems should be designed, and about who
should be doing that design.

In this paper we propose an explanation for this odd state of
affairs, and suggest a research agenda and design approach
that can begin to bring our computer systems into better
alignment with our social context.

MYTHOLOGY OF SYSTEM DESIGN
Any community, including communities of practitioners,
has stories it tells within its ranks about how its activities
are conducted. In a community of practice these are largely
stories about how the practice is conducted, when it
succeeds and when it fails. As with any stories, these are
selective and emphasize especially significant or unusual
aspects of the practice. They do not directly drive the
practice, but they do shape it by helping each participant
construct and frame their account of their practice.

We are calling this set of stories the mythology of the
practice. To understand how our mythology as system
designers affects our practice, and how it might be
improved, we need to examine our mythology more
closely, and briefly examine its roots.

Standard Mythology of System Design
Our mythology of system design takes some basic
principles for granted—so much so that they are rarely
stated. The following principles are widely accepted:

• Define clear system requirements.

• Define a clean architecture that can meet all the system
requirements.

• Define clear choices for users at each point where they
interact with the system.

• Maintain consistency throughout the design, for both
ease of maintenance and ease of learning.

Underlying these principles are even more fundamental
assumptions:

• The parts of the system must interact according to a
pre-established harmony defined during its design.

• The job of a designer is to discover, clarify, and when
necessary invent the rules that define that harmony,
and then embed them into the computer system.

• The users must interact with the system in terms of the
language or ontology that these rules create.

Our first—and probably most important—point is that
these are assumptions, and that they could be different .
We have some proposals about specific better
assumptions, but before we get to those, let’s look at how
we got our current assumptions.

Coordination
People working together are always caught in the tension
between their particular ways of understanding the world,
and the explicit shared regularities they must maintain in
order to coordinate their activities.

We must respond to particularities—the details of the case
at hand—to achieve appropriate, creative action in response

to a changing world and changing goals. These responses
can generate unpredictable and unbounded diversity.

Humans in groups depend on shared regularities
—expectations, norms, conventions, assumptions—to
coordinate their activities. To maintain group coordination
in spite of adverse circumstances, such as distance, many
participants, external hostility, and so forth, we need to
support these shared regularities through discussion,
teaching, monitoring and enforcement. In other words, the
regularities must be made explicit. We most often
encounter these explicit regularities as various sorts of
“rules”, including organizational regulations, rules of
thumb, and “manners”.

Particularities and explicit regularities tend to conflict,
because individuals can often see ways to respond to
particular circumstances that are not anticipated by or
compatible with the regularities required for coordination.

Bureaucratic Organizations
Since at least the advent of large-scale agriculture and
armies, over 5,000 years ago, people have been struggling
with this tension between particularities and regularities,
especially in large groups.

Over these thousands of years people have codified this
struggle in military, religious, governmental, and business
organizations. Relatively recently this continuing
codification has produced bureaucracy as we know it
today. As Joanne Yates has shown,

During the period from 1850 to 1920, formal internal
communications emerged as a major tool of
management, exerted toward the goal of achieving
system and, thus, efficiency. By the end of that period,
control through communication was a fact of life in the
workplace [7].

In such a bureaucracy, all “official” activity is viewed as
being conducted according to explicit regularities, captured
in rules, guidelines, etc. Bureaucrats are trained and
monitored to make sure that they “follow” the rules and
interpret them consistently. More precisely, they must
obey the following key norms:

• Focus exclusively on identified regularities in
situations.

• View all the particularities in a situation in terms of
these regularities.

• Consistently act in terms of pre-defined rules about
these regularities.

• Keep records to allow management and enforcement of
the bureaucratic norms.

By respecting these norms, a well-run bureaucracy can
coordinate the work of huge numbers of people and can
minimize corruption, disorder and mistakes.

Computer Systems: Perfect Bureaucratic Tools!
Viewed in terms of the standard mythology of system
design, computer systems ought to be the perfect support
for bureaucrats. Computers can only work in terms of the
regularities they have been built to handle. They can only
respond based on the way situations fit these pre-defined

regularities. They always follow pre-defined rules, and
they do not (at least in the myth) make mistakes. Finally,
computers do not change spontaneously, and so they do not
require constant management and enforcement of these
bureaucratic norms—they obey them automatically.

All of this is no coincidence. Computer design practice and
mythology arose from practices such as telephone systems
engineering, ballistics calculation and metamathematics
which were pursued by communities intensely dedicated to
the bureaucratic norms.

PROBLEMS WITH THE STANDARD MYTHOLOGY
It’s hard to get perspective on design assumptions
embedded in the mythology and practices of such a
pervasive tradition. To create a vantage point from which
we can see potential alternatives, let’s take a more careful
look at how bureaucracies actually work.

Bureaucratic norms arose in the process of trying to control
people’s tendencies to creativity, subjectivity, and
“excessive” responsiveness to particularities. These
tendencies may be exercised in the service of self-interest,
but they may also be simply the result of trying to do a
better and more fulfilling job.

These efforts at control are never completely successful,
and in fact total success would be disastrous for the
organization. The “ad hoc elaboration of rules in use” to fit
them to individual cases requires a significant level of
human creativity and responsiveness to particularities [6,
9]. We call this process accomodation. Furthermore,
changes in the explicit regularities will be required, and
successful change will also demand these abilities.

As a result, real bureaucratic behavior is a dynamic balance
shaped by both the underlying human tendencies and the
norms. The norms themselves have evolved to make this
dynamic balance effective.

Bureaucratic Organizations, Reconsidered
The dynamic balance found in real bureaucracies has
several important characteristics that are not captured by
the standard mythology:

• Particularities are observed and accommodated.

• The practices of fitting particularities into the rules
evolve, changing the interpretation of the rules.

• Practices of rule application are accumulated and
codified, often leading to explicit changes in the rules.

• Changes in the rules are designed and implemented.
Each change triggers a new round of accommodation
as workers adjust their practices to the new
regularities.

All of these activities take place in the context of common
purposes or missions, which help to guide the
accommodation and change, and allow the individual
bureaucrats to act appropriately even in the absence of
explicit regularities. When members of a bureaucracy do
not subscribe to common purposes, the norms can only be
maintained by enforcement. Since enforcing obedience to
the norms is costly, those who maintain the integrity of an

organization must be sensitive to dissent and must make
pragmatic tradeoffs to keep the organization viable.

The mission of the organization underpins several further
norms that are often important in real bureaucracies:

• Apply the rules with the mission in mind.

• Notice conflicts between the rules and the mission.

• Change the rules so that they serve the mission better.

Computer systems: Less Than Perfect…
Unfortunately all of these additional characteristics of real
bureaucracies, and the corresponding demands they place
on bureaucrats, are not supported by current computer
systems, precisely because computer systems were created
using the standard mythology of system design.

In particular, computer systems require their users to map
particularities into regularities, and only then can the
systems proceed entirely based on the regularities. The
systems never deal with the particularities themselves or
with the process of accommodation. This has unfortunate
consequences:

• Particularities cannot be accommodated by the systems
or discussed within them.

• New regularities and difficulties with old ones cannot
even be noticed by the systems, since these arise in the
process of mapping particularities into regularities.

• Changes are very difficult, slow, and expensive since
the system will not notice or accommodate to
problems, so all the implications of new regularities
must be anticipated by the system designer.

• Most profoundly, computer systems don’t share the
mission of the organization; all they have is their
explicit regularities. The burden of adapting as
necessary to carry out the mission falls entirely on
users of the systems.

All of this is no coincidence. Practices of accommodation
and change are rarely if ever discussed explicitly in
bureaucratic mythology, perhaps because the norms are
focused on constraining human tendencies, not enabling
them. In Yates’ extensive study, for example, there is
essentially no discussion of the practices through which
organizations handled accommodation or change, although
some of the technological mechanisms are mentioned in
passing [8].

NEED FOR A NEW MYTH
Thus the standard story of bureaucratic rationality that is
built into our design practices for computer systems is a
story which provides a very partial and rather damaging
view of how “good,” “rational” organizations work.

Once we recognize the limited and inaccurate perspective
on work and technology imposed by the standard myths of
both organization and system design, we can start to search
for more effective approaches and write better myths
around them. That is the focus of the next major section.

However, before we leave our analysis of the problem, let
us briefly deal with one seductive alternative.

Smart Systems are Not the Answer
Many have found it very tempting to try to solve the
problems described above by making systems “smart”—so
that they can notice new regularities, for example. We
believe that this is a fatal blind alley. Not only are current
“smart” system technologies grossly inadequate to the task,
but the mythologies behind many of these “smart”
technologies tend to simply reinforce the standard
bureaucratic mythology that caused the problems in the
first place. They do little or nothing to integrate systems
with the mission and values of the organization, or to
support the continual reassessment, reinterpretation, and
reconciliation that are necessary in a changing world.

Classical Artificial Intelligence (AI) is the source of most
ideas about how to make systems “smart.” However, AI
was founded on the conjecture that a sufficiently large,
complex, and well-designed “perfect bureaucracy” could
duplicate human flexibility and adaptability. Not
surprisingly, it has run into intractable problems that are
essentially variations on the ones mentioned above. For
example, typical AI systems require examples to be
“translated” into an appropriate input format—which
conveniently maps the particularities of the examples into
the regularities the system is designed to handle. As we
might expect, such systems cannot be extended to deal with
the untidiness of real situations.

In the last fifteen years, various forms of “soft computing”
(for example, neural networks) have been explored as
alternatives to classical AI. These techniques can indeed
help in some areas where flexibility and accommodation
are required, such as handwriting, speech recognition, and
recommending books and CDs. However as yet no one
knows how to build large systems using these techniques,
and in fact we believe that there are deep problems with
“scaling” these approaches. As a result, these techniques
tend to be used as “rubber bumpers” on systems otherwise
built according to the standard mythology.

As we shall see in the next section, a much more realistic
and fruitful alternative is not to make systems smart, but to
make them better vehicles for the users’ intelligence.

A BETTER DESIGN MYTHOLOGY FOR TODAY
We believe it is feasible to do much better in designing
computer systems if we aim to better integrate human
organizations and computer systems, by making the
computer system help the humans do the whole job, not
just the part that fits the standard myth of bureaucracy.

In this section we will explore whether we can move
toward such integration without radical changes to the
current technology of computing. Perhaps surprisingly, our
tentative answer is that we can actually move quite far. In
the subsequent section, we speculate on what might be
possible with radical changes in computing technology.

To help humans do their whole job, we need to honor the
particularities they must handle, the accommodations they
must make in nearly every case, the organizational
purposes that underpin the coordination, and the process of
negotiation and change that keeps the organization viable.
Let us examine each of these in turn.

We Must Honor Particularities
The standard mythology simply assumes away
particularities that do not fit the regularities. The designer’s
motto might be “If it’s not captured by the regularities, it’s
not important.” As a result, whenever the computer system
fails to capture important particularities, users must create
parallel records to capture what the system ignores, and
then they must coordinate the computer system with their
separate records.

For example, in a British printing shop studied by Graham
Button [3, 4], a “complete” workflow system was put in
place. As we would expect, it could not record any
information about jobs beyond its predefined attributes (i.e.
its regularities). Of course, these predefined attributes were
nowhere near rich enough to capture everything the people
working in the print shop needed to remember about a
job—in case, for example, it needed to be re-run “the same
way.” Even if, by some miracle of design, the predefined
attributes had been adequate, new jobs or work practices
would have demanded new attributes very soon.

As a result, the print shop workers maintained the old
manual job-tracking system in parallel with the
computerized workflow system, and coordinated the two
systems themselves. The old manual system had a job
tracking form similar to the computer system, but in the
manual system, the form had margins—workers could
write notes whenever important features of the job didn’t fit
into the predefined fields. Unfortunately, typical electronic
forms don’t have margins, so the workflow system, far
from helping the workers, imposed an extra burden.

Fortunately, there are many ways to extend computer
system designs so that users can track particularities
within the system. Simply allowing annotation or
“margins” on electronic forms, for example, moves a long
way in this direction. Recording annotations and
displaying them when the form was retrieved would have
greatly aided the workers in Button’s print shop.
Furthermore, once annotations are captured in machine-
readable form, extensions like content search,
summarization, etc. become relatively easy to add.
Moreover, the accumulated annotations are a valuable
resource for suggesting and evaluating extensions to the
system’s regularities that will allow it to support more of
the particularities its users actually encounter.

Margins are only an example, though a very useful one.
There are many ways to help users to track the
particularities they need to handle, and often they arise
fairly naturally from the way a given computer system is
used. The key is simply to remember that the system will
never be able to capture all the important particularities in
terms of its regularities.

We Must Honor Accommodation
Typical computer systems require users to translate
particularities into the regularities that the system can
handle, and then apply predefined behaviors based on that
translation. This translation must produce terms that will
lead the system to “do something reasonable.” To produce
“good” translations, users must “reverse engineer” the

system’s behavior to come up with encodings that produce
the right results. Any particularities that can’t be so
encoded must be handled outside the system.

In Button’s print shop, for example, while workers often
ran portions of the same job on multiple machines, the
workflow system had no way to describe this, so users had
to find ways to convert the actual machine usage, operator
time, etc. into terms that the system could handle.

Another example, with more fruitful system design
implications, comes from Fikes and Henderson’s
discussion of the work in an order center for copier supplies
[5]. At one point a clerk, attempting to get a “ship to”
address for an order, was told that the copier was on an
ocean-going barge which called at several different ports,
and therefore the address depended on the date the supplies
would arrive. Not surprisingly, there was no pre-defined
way to fill in the “ship to” field with an address that would
produce the correct results.

The clerk invented an ingenious solution on the spot.
Instead of a valid address (from the system’s perspective),
the clerk entered a phone number, and instructions to “Call
Bob”. This solution highlights several troubling issues, but
it also suggests an approach to supporting accommodation.

This solution depended on two things. First, the “ship to”
field was flexible enough to accept what was clearly not a
valid address. Second, the field ended up being interpreted
by a human being on the shipping dock, who could
understand the instructions.

If the supply center had been using a “sophisticated”
computer system, this accommodation would probably
have failed for two reasons. First, the clerk probably would
not have been allowed to put the order into the system with
a “Ship To” field that the system thought was invalid.
Second, the field would probably have been used to
automatically generate a shipping label, quite possibly with
bar-coded routing information, and no human would have
had an opportunity to notice and interpret the instructions.

Note that in this case, annotations could be helpful but they
are not sufficient. At a minimum, the system must allow
information in essential fields to be incomplete or invalid,
and must “call for help” when it needs to carry out some
operation that depends on the “invalid” information.

Of course this sort of accommodation mechanism may
interfere with the functioning of the system if it is used
inappropriately, and it may be subject to abuse. This is just
the sort of concern that the standard bureaucratic
mythology tends to raise.

However, in reality, building mechanisms for
accommodation into a computer system is much more
likely to solve problems than to create them. People must
make these accommodations somehow, unless they are
willing to violate or severely limit the mission of the
organization. In the print shop it was not feasible to run
every job on only one machine, and in the supply center the
supplies could not always be shipped to a fixed address.
The alternative to system support is for people to cobble
together accommodation mechanisms that are completely

outside the system, and are effectively invisible from
within the system.

If the system supports accommodation, accommodation
activities will generally be much more available for audit
than the methods outside the system that will otherwise be
used. Furthermore, the record of cases where
accommodation was necessary can help system maintainers
to identify places where more automated support is needed.
Overall, accommodation support is likely to produce a net
improvement in system performance and security.

Again, even the most basic support for accommodation
moves us a long way, but it opens the door to further
improvements based on analysis of the accommodation that
is actually being done, semi-automatic codification of
accommodations, and so forth.

We Must Honor Purposes
In the standard bureaucratic myth, purposes are not part
of the system. The designers of the system lay down rules,
and the bureaucrats follow them. The designers need not
explain their purposes, and the bureaucrats don’t need to
understand the purposes, since they just have to follow the
rules. The purposes, just like the rules, are not affected by
the activities of the bureaucracy.

Actually, of course, any viable system, including a
functioning bureaucracy, depends on broad agreement on
purposes, and this agreement evolves over time.
Accommodation, for example, is guided by the underlying
purposes of the regularities it is interpreting and extending,
at the same time that it also extends and reinterprets those
very purposes.

In computer systems, purposes show up mainly in the
context of help systems, templates, wizards, etc. These
mechanisms are designed to support users who have a
purpose they are seeking to fulfill, but don’t know how to
map this desire into the system’s regularities. These user
support mechanisms provide various types of maps from
purposes to system behavior.

These mechanisms typically provide one way
communication, from the system designer to the user,
consistent with the standard mythology. However this need
not be the case, especially in a networked world. Since we
are looking for ways to make the system a better vehicle for
users’ intelligence, we can see that it should not be the
case. Once we have shifted our point of view, we can see
that there are many opportunities to do better.

One useful option is suggested by email support forums,
which typically have FAQs (lists of Frequently Asked
Questions, and their answers). These forums are typically
excellent vehicles for users’ intelligence. Users ask
questions, and system experts (in many cases more
experienced users) answer the questions. Over time, the
questions and answers are gradually codified into a FAQ.

If we extend a typical help system with a support forum,
and consolidate answers provided in the forum into the help
system, we get a mechanism that has the potential to honor
purposes within the system. User questions that cannot be
answered within the help system become part of an

ongoing conversation about the structure of the system and
how it supports its users’ needs.

As with honoring particularity and honoring
accommodation, this type of mechanism also supports the
evolution of the system itself.

We Must Honor Change
The most fundamental of these four issues is support for
change. Change is extremely difficult to handle effectively
in systems designed using the standard mythology, since it
is completely outside the mythology. Computer systems
designed using this mythology create an impermeable wall
between the users of the system—who know “where it
squeaks”—and the maintainers of the system—who see
only the (by definition) consistent view from inside. The
need for change, the reasons for the need and the specific
situations where the need arises have to be communicated
entirely outside the system, creating another parallel
activity that must be coordinated with the computer system,
primarily by social means.

As a result of this exclusion of change management from
the computer system, the process of changing the system is
severely hobbled. Decisions about changes are not directly
driven by the needs of the users, so changes tend to be
relatively slow and poorly matched to users’ priorities.
Even more seriously, design decisions are decoupled from
the specific knowledge of the users, so design tends to be
based on an inadequate understanding of how the system is
really used, and how changes will affect users.

The other three areas we have discussed—particularities,
accommodation, and purposes—could be considered
specific mechanisms to support change. Each one captures
information from the users of the system in a form that
bears directly on the changes needed in the system. In
some cases, such as aggregating accommodations, a
computer system might be able to flag and even
mechanically abstract needed changes largely
automatically.

Undoubtedly, using this perspective, we can come up with
many more ways to incorporate the change process into the
system itself, and help the users and designers collaborate
effectively on evolving the system to better support their
joint purposes.

However, the ability to support change in the use of the
system is not enough. Change raises the original challenge
that drove the development of bureaucracy in the first
place: How can the institution ensure that the local changes
combine to support the mission and maintain enough
coherence to preserve the organization? In the examples
above we have left this burden on the shoulders of the
system maintainers. In the following section we consider
how computer systems can help deal with the tension
between change and maintaining coherence.

A BETTER MYTHOLOGY FOR THE LONG TERM
In the previous section, we accepted the basic concept of
bureaucracy, although we adopted a new view of what
really goes on in bureaucracies. We observed that the
standard bureaucratic myths failed to deal with the need for

accommodation or change, because they were focused
entirely on constraining people’s natural tendencies, which
might otherwise result in the organization sliding toward
chaos. We suggested that once we recognize this, we can
find ways for computer systems to help people manage
accommodation and change.

In this section, we question the long-term value of
organizations as we know them today. Bureaucracy
reflects the inherent problems of building large
organizations entirely out of humans. Socio-technical
systems composed of both computers and people have
problems too, but they are very different problems, and we
believe such systems can become dramatically superior to
any purely human organization. To achieve such superior
systems we will need radically new myths.

However, our entire view of the world is filtered through
concepts rooted in organizational structures and concepts
designed to constrain and regularize human
tendencies—from scientific “laws”, to the great chain of
being, to “canonical” works in literature, art, and music.
Such a pervasive framework makes imagining radical
alternatives very hard.

To begin this difficult process, we can observe that
evolving systems need to maintain both agility and
coherence. If a system isn’t agile, it cannot respond
effectively to local variations or global change. If it loses
its coherence, it cannot act effectively as a system at all.

The bureaucratic solution is to maintain coherence by
imposing rules that guarantee coherence through pre-
established harmony. Bureaucratic logic then requires
managing all proposed changes through a central authority
(designers, the systems department). This attempt to
preserve coherence implicitly depends on underlying
human tendencies to provide adequate agility.
Unfortunately, as organizations grow, this approach tends
to greatly reduce agility, and over time it also loses the
ability to maintain coherence, since it becomes incapable of
meeting the organization’s needs.

Our goal is to find new pliant modes of human organization
that can sustain high levels of both agility and coherence as
they grow. While we are still far from an engineering
theory for creating such pliant organizations, we do see
four transitions in computer technology that we believe will
help us move in this direction:

From Programs to Patterns
Computer systems today typically execute programs which
specify processes completely deterministically. The set of
programs in a system must mesh according to a pre-
established harmony, since the programs have no ability to
adapt to each other. This leads to a system that is
incredibly coherent while it works, but also incredibly
lacking in agility. Furthermore, this coherence is fragile,
since systems that depend on pre-established harmony
descend abruptly into chaos if the harmony fails.

In pliant systems programs will be augmented or replaced
with process descriptions using patterns, as described by
Christopher Alexander [1]. (Note that this is very different

from using patterns to help people design and build
software, and will be much harder to implement.) Such
patterns specify processes partially and open-endedly. Any
actual process is the result of many overlapping and
interacting patterns. The interaction of the patterns is not
based on pre-established harmony, but is worked out in the
process of using them and sometimes requires search and
discovery. The system may need to request help if it
cannot get its patterns to mesh well enough; conversely,
people may intervene to push the patterns into specific
relationships.

From Execution to Enaction
In today’s systems, programs are executed
—deterministically elaborated in a pre-specified
relationship to a pre-defined context. Again, this has all the
problems of pre-established harmony. In particular, it
assumes that the structure of the context for executing a
program can be completely known in advance.

In pliant systems patterns will be enacted—interpreted by
finding a fruitful way to relate the patterns to the specifics
of the case at hand. The process of enaction determines
what aspects of the case are relevant and how they should
be organized to the meet the needs of the patterns being
enacted. As a result, enaction can support accommodation
much more effectively than can program execution in
current systems. Again, a pliant system may ask for human
help if it encounters problems in enacting patterns, and
people may intervene to influence the way the system
enacts patterns in specific cases.

From Monoliths to Collaborating Activities
A computer system based on current technology defines a
single, consistent, monolithic perspective which
encompasses all of its information and actions. Once
again, this provides incredible coherence while suffering
from very poor agility and extreme fragility. However, all
organizations contain multiple shifting points of view
whose interplay is vital to the actual work underway. As a
result, the apparent coherence imposed by the computer
system is illusory and stands in the way of assessing and
responding to the factors that affect coherence in the
organization.

Pliant systems will consist of multiple collaborating
activities—both cooperating and competing—which
contain many partially reconciled perspectives that are only
consistent enough for the purposes at hand. Enaction of
patterns can continue to function effectively in a partially
inconsistent environment, but excessive inconsistency will
ultimately lead to loss of coherence. To maintain adequate
coherence, enaction must also monitor the consistency of
the process being enacted, at many different scales, and
work to increase consistency if coherence becomes
inadequate. Users have partially reconciled perspectives of
their own and will need to be active participants in the
process of maintaining coherence.

From Design to Evolution
Current computer systems are updated through re-design
and re-implementation, resulting in a transition from one
universal perspective to another. Designers usually must

maintain some compatibility between the old perspective
and the new one, to allow existing data and applications to
survive the transition. However, in practice, because of the
strong requirements of pre-established harmony,
implementing changes and maintaining compatibility are
often in deep conflict, and sometimes necessary updates
become impossible.

In pliant systems, collaborating activities will evolve
largely by incrementally consolidating enaction of their
patterns. Such consolidation is similar to just-in-time
compilation—once an activity has successfully enacted
some patterns it can succeed more quickly in future similar
cases, and may gain the ability to handle some more
difficult cases. If the system needs help to succeed in one
case, it may be able to succeed in subsequent similar cases
without help. The knowledge acquired through successful
enaction of patterns can be recorded by extending and
differentiating the patterns themselves. In addition to this
incremental consolidation, the system will need to refactor
its patterns as it evolves, to prevent unbounded growth in
complexity and to improve its ability to generalize to new
cases.

SUMMARY AND CONCLUSION
Let us review some broad characteristics of this shift in
mythology:

Different Stance
We begin by recognizing that no attempt to fit the world
into a neat set of categories can succeed for long. We will
always encounter inconsistent, ambiguous, messy bits that
don’t fit. Standard system design, which depends on
making the world fit a neat set of categories, will naturally
have trouble.

Co-Production
Trying to solve this problem by making machines “smart”
isn’t feasible. It’s a lot easier and more fruitful to help
people be smart, and make machines a better vehicle for
human intelligence. Working together, people and
machines can handle problems better than either can alone,
but only if they honor each other’s strengths.

Multiple Truths
There is no single consistent perspective within which we
can frame all the information or activity in any given
complex system, much less the wide variety of systems that
we encounter daily. Instead, we are always faced with
multiple interacting perspectives which cannot be reduced
to one another. We need to find ways for machines to help
us work with these multiple perspectives.

Dynamic Balance of Change and Coherence
Effective systems must be sensitive to needs for local
change and at the same time must maintain adequate
coherence, at many different scales. The dynamic balance
between change and coherence is driven by, and judged
against, each organization’s need to achieve its mission.

We Can’t Get Out of the River
There is no way for a designer to stand above the fray, as
an observer standing on the bank of the river. Even
reflection is a part of the action. Ultimately there cannot be

a role of designer prior to and distinct from user. We are
all in this together, and designers will be more successful if
they see themselves as part of the whole socio-technical
system.

ACKNOWLEDGMENTS
Early work leading to these ideas was done at Apple
Computer, and we appreciate its support. The other
members of the team at Apple were Dave Curbow, Alan
Cypher, Paul Dourish, Tom Erickson and Don Norman. In
addition, we benefited from consulting by Niklas Damiras,
Xin Wei Sha and Brian Cantwell Smith.

Since May, 1997, some members of this team have
continued to work on these ideas as Pliant Research
http://www.pliant.org/ .

REFERENCES
1. Alexander, C. The Timeless Way of Building, Oxford
University Press, New York, 1979.

2. Flowers, S. Software Failure: Management Failure:
Amazing Stories and Cautionary Tales, John Wiley &
Sons, 1996.

3. Bowers, J., Button, G. and Sharrock, W. Workflow
from Within and Without: Technology and Cooperative
Work on the Print Industry Shopfloor, in Proceedings
ECSCW'95, (Stockholm, Sweden), European Foundation
for Cooperative Work Technology, 1995

4. Button, G. and Sharrock, W. The production of Order
and the Order of Production, in Proceedings ECSCW'97,
(Lancaster, UK), European Foundation for Cooperative
Work Technology, 1997

5. Fikes, R.E. and Henderson, D. A. Jr. On Supporting
the Use of Procedures in Office Work, in Proceedings of
the First Annual National Conference on Artificial
Intelligence, American Association of Artificial
Intelligence, Menlo Park, CA, 1990.

6. Suchman, L. Plans and Situated Action: The Problem
of Human-Machine Communication, Cambridge University
Press, Cambridge, 1987.

7. Yates, J. Control Through Communication: The Rise of
System in American Management, The Johns Hopkins
University Press, Baltimore, 1989; pp. xvi-xvii.

8. Yates, J. Op cit. pp. 68, 72.

9. Zimmerman, D. H. and Wieder, D. L.
Ethnomethodology and the problem of order: Comment on
Denzin. In J. D. Douglas (ed.), Understanding Everyday
Life: Toward the Reconstruction of Sociological
Knowledge (pp. 285-298) Chicago, Aldine, 1970. Cited in
Suchman, L. and Trigg, R. Artificial intelligence as
craftwork In Chaiklin, S. and Lave, J. Understanding
practice: Perspectives on activity and context Cambridge
University Press, 1993.

