
 1

The Design and Deployment of Loops:
A Web-Based Conversation Space for Work Groups

Thomas Erickson, Christine Halverson, Wendy A. Kellogg, Mark Laff,
Jeremy Sussman, Tracee Wolf, Denise Edwards

IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598 USA

{snowfall|krys|wkellogg|mrl|jsussman|tlwolf}@us.ibm.com

ABSTRACT
We describe the design of Loops, a second-generation
CMC system aimed at small- to medium-sized corporate
work groups. We begin by discussing the goals of the
system and the rationale behind its design. Next we discuss
how an early working version of the system was ‘group
tested,’ and the changes that lead to. Then we describe its
realization in an implemented system, discuss its
deployment within our organization and provide some
examples of how Loops is used. We conclude with
reflections on the usage patterns of Loops and their
implications for the design of similar systems.

Author Keywords
CMC, CSCW, Conversation, Chat, Design, IM, Instant
Messaging, Social Proxy, Awareness, Online Environments

ACM Classification Keywords
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – Computer supported cooperative
work, evaluation/methodology, asynchronous interaction,
synchronous interaction

INTRODUCTION
For the last several years we’ve been engaged in designing
online conversation spaces for distributed work groups. Our
aim is to design “socially translucent” systems [5, 6]—
systems that provide a social context for interaction by
providing cues about users’ presence and activities. We
claim that such systems can, by taking advantage of the
human ability to draw inferences from traces of activity,
support social processes (e.g. imitation; peer pressure) that
permit groups to function effectively.

Our approach to making social information visible employs
two tactics: social proxies and persistent conversation.

Social proxies are minimalist graphical representations of
the presence and activity of participants; their aim is to
provide a sense of the activity in an online system without
eliminating all vestiges of privacy. Persistent conversation
refers to text-based computer mediated communication
(CMC) that persists over time—that is, it is similar to chat
except that all conversations are logged and are always
visible to participants. Both of these tactics were initially
explored in the context the “Babble” system [7].

In this paper we describe the design and deployment of
Loops, the web-based successor to Babble. We begin by
describing how our experiences with Babble shaped its
features. We go on to describe the resulting system, and
discuss how we approached the challenge of user testing a
system for groups. Next we turn to our experiences in
deploying Loops, describing our mixed record of success,
and some of the usage patterns observed in successful
deployments. Finally we reflect on the implications of our
experience for the design of similar systems.

DESIGN RATIONALE
The design of Loops was shaped by our experiences with
the Babble system. While Babble’s conversation model and
social proxy seemed quite successful, there were a number
of recurring problems that we wished to address in the next
generation system. We will treat each in turn, but to begin
we need to provide a little background about Babble.

About Babble
In terms of its functionality, Babble [7] resembles a multi-
room chat system, with three differences. First, the
conversation in Babble persists across sessions and may be
synchronous or asynchronous: that is, remarks may be
separated by seconds, minutes, days or months. Second, the
structure of Babble’s conversation space is user-definable:
anyone can create, modify or reorganize rooms. Third,
Babble uses visual cues to enhance its users’ mutual
awareness of one another, and of the presence and location
of new information in the environment.

Over the five years of its project’s life, Babble has been
deployed to about two dozen groups, mostly within the
large corporation in which we are based. Deployments were
to three sorts of groups: small, close-knit but distributed

 2

work groups; large, globally distributed communities of
interest; and ad hoc task-forces that existed for a relatively
short period of time. Several, though not all, of the
deployments were studied (see [1, 6]).

Four Requirements
As we gained experience with Babble, we noticed a number
of recurring problems that we used to define four
requirements for the next generation system.

Supporting Deployment and Updating
In our five years of work with Babble, we repeatedly
struggled with difficulties in deploying and updating it. The
Babble client, written in Smalltalk, was 2 to 3 megabytes in
size; to do an installation or an update, the users had to
download and run an install package. This left the timing of
the install up to each person, and thus installs were often
staggered across several days. This made it more likely that
those who installed Babble immediately would log on and,
finding no one to talk to, not be inclined to return. In short,
every time we released a major update, we disrupted the
communities of our users and ran the risk of causing a
deployment to fail. We wished to remedy this problem.

A Changeable Look and Feel
We wanted to be able to easily alter aspects of the look and
feel of the user interface and to allow our visual designer to
directly work in the medium rather than having design
prototypes reinterpreted by a programmer. As noted by
Houde and Sellman [13], most development environments
do a good job of supporting design or programming, but not
both. We place considerable value on aesthetics, and as
Babble had always maintained a stubborn resemblance to a
Smalltalk browser, we wanted our next system to provide as
much support for iteration in the visual design as it did in
the functional design.

Support for ‘Publishing’ Text
Another problem we observed, both in our own use of
Babble as well as in virtually all of our deployments, was
the need to ‘publish’ text outside of conversations. Babble
users often wanted to create text that would be visible to
others for long periods of time. Examples of this were that
users often created profiles of themselves (in large Babble
communities), descriptions of their projects, personal
resources (e.g. lists of URLs), or had announcements that
they wanted to make visible to everyone. The problem was
that the only mechanism Babble provided for creating text
was as a comment in a conversation, and so any text entered
was liable to being followed with commnets, and often
ended up being lost in a stream of conversation. While
users developed a number of conventions for dealing with
this problem (e.g. creating parallel conversations, one for
talking and one for publishing), it was clear that a way of
publishing text outside of conversations would be a
welcome addition.

Support Membership in Multiple Communities
Initially, we had envisioned that Babble would be used as
an online environment for distributed work groups. But, as
time went on, Babble was requested and used by other
types of groups: large communities of interest that wanted a
long-term collaborative space, and ad hoc task-forces that
needed a collaborative space for projects of limited
duration. It became apparent that those who found Babble
useful had multiple uses for it, or, to put it another way,
people wanted multiple Babbles for use with multiple
groups. Babble provided no support for this situation, and
so we resolved to address it in the new system.

The Foundations of the Loops System
The requirements described here shaped the design of the
Loops system in three ways. First, the requirement for
supporting easy deployment and updating pushed us in the
direction of creating a web-based application. Obviously,
keeping the application code entirely on a server,
eliminated the problems of requiring users to download and
install new versions of the application, and of keeping users
in sync. Second, the requirement for an easily changeable
look and feel, in tandem with the decision to go with a web-
based application, led us to implement the Loops client in
Macromedia’s Flash™, an environment that allowed us to
create sophisticated interactive animations that can play in
browers. Finally, the last two requirements were addressed
in the user interface, which we turn to later.

RELATED WORK
While Babble and Loops are not quite like any other
collaborative environment, they blend features from a
variety of collaborative environments. In terms of look and
feel they resemble multi-channel chat systems (e.g. [W96]),
with their transcripts of (potentially) real time conversation
and their lightweight conversation model. They also are
akin to the instant messaging applications that are becoming
widely used in corporate work places [15, 11, 14],
particularly in their ability to support both lightweight
coordinating talk and in-depth work conversation. And
they have similarities to MUDs and MOOs (e.g. [2, 3, 21,
4]) in that they provide a user-extendable set of ‘rooms’ that
persist over time, and through which users move and
support both opportunistic interactions and structured
events.

The two tactics that Babble and Loops use to support
mutual awareness—persistent conversation and the social
proxy—likewise have a variety of antecedents. Persistent
conversation, hearkens back to the beginnings of online
community in systems like EMISARI [12] and The Well
[18], continues in applications like include CSILE [20],
CaMILE [9] and TeamRooms [19], and is most recently
manifesting itself in web boards and blogs. That text-based
conversation is a rich source of social information has been
well-documented, especially by Cherney [3], albeit in a
non-persistent case. Second, the social proxies of Babble
and Loops provide a number of visual cues about users in

 3

an attempt to provide increased awareness. In this they bear
similarities systems that support workspace awareness (e.g.
[8], and to work on visualizing chat users [22].

THE DEVELOPMENT AND EVALUATION OF LOOPS
As might be expected, Loops went through a period
iterative development and evaluation. Initially, early
versions were tested among ourselves. This has obvious
limitations, and we clearly needed other forms of
evaluation. However, as Herbsleb et al. [H02] have noted, a
dilemma plagues groupware developers: how do developers
go about getting user input for applications whose user
experience is fundamentally a collective one, when the
preliminary nature of the software is such that it is likely to
deter collective adoption.

Our response to this dilemma was to run user tests in which
our ‘users’ were existing groups. We decided that we would
invite pre-existing groups, with experience interacting
online, to use our system for a limited time trial that we
termed a “test drive.”

The Test Drives
We identified and recruited two groups for our test drive.
One, Netweavers, was an exisiting Babble community with
a couple of dozen core members; the other, Trellis, was a
small group of four, two of whom had a well established
mechanism for remote collaboration involving the use of
instant messaging and the telephone. Because the
Netweavers’ principal organizer was concerned about
fragmenting the part of the community that used Babble, we
agreed to do a limited time trial of four days.

Over the four days of the test drive, 26 people accessed the
Netweavers Loop, created their own accounts, and spent
time there, trying out features, providing feedback, and
engaging in the combination of banter and wide-ranging
discussion that characterizes online activity in the
Netweavers’ Babble. The Trellis test drive was more open-
ended: the results reported here come from about two
weeks of use, almost entirely from the two experienced
collaborators, though all four ‘members’ of Trellis logged
in at least once.

In general, both groups made extensive use of Loops.
Between them, the Netweavers and Trellis Loop users
produced approximately 42,000 words (or 3,300 and 5,000
words per day of use, respectively). Individuals varied
considerably in their usage patterns, but the median user
logged on to Loops 3 times, and spent about 3 hours on
line. We took the number of users, frequency of use
(including return visits), and amount of content produced as
a sign that the system was basically usable.

Our primary method of gathering information during the
test drives was to observe and participate, noting
confusions, questions, comments, and signs of emerging

practices. Since many people were typically present at the
same time, and since they had been explicitly asked to
provide feedback, critiques often took on a dialectic
character. Sometimes agreement about problems emerged
quickly; at other times disagreements arose and led to
discussions revealed differences in assumptions, values, etc.

To get a clearer picture of users’ preferences and priorities,
we printed out transcripts of all discussions (about 42,000
words of text), and did a rough analysis to identify
problems, controversies and suggestions. From this we
developed a structured survey that could be completed in no
more than 10 minutes. The main portion of the survey made
four to five statements about each UI element, and used a 7
interval scale to quantify agreement; the survey concluded
with open ended questions, including queries about which
interface elements merited the most screen space. The
survey was emailed to the 30 participants shortly after the
end of the Test Drive; 22 completed the survey.

Space does not permit a detailed description of the results.
Over all, the survey (as well as the sheer volume of use
during the test drive) indicated that Loops was basically
usable: one question (directed only to regular Babble users)
showed a preference for Loops (14 agreeing, 2 neutral, 1
disagreeing) provided its performance problems and
obvious bugs were addressed (something accomplished in a
subsequent move to a new version of Flash). Other probes
indicated positive responses to the new UI features for
supporting static text. The test drive also provided
anformation about small details of the design. Among the
things we found out was that people wanted a wider chat
pane, smaller or concealable bulletin boards, page-at-a-time
scrolling, all of these were implemented.

One other aspect of the survey—which is, to our
knowledge, novel—is that we also administered it to our
own group. We decided it would be interesting to take the
survey ourselves, answering not with our opinions, but with
our intuitions about what users would say. In addition to the
standard scale, our self-survey included two other ratings:
“all over the map”, for when we thought users would have a
variety of opinions; and “no idea”, for when we didn’t think
we knew what users would say (although the “no idea” idea
rating turned out to be used very rarely!). We did a rough
analysis, noting which category the clear majority of the
users’ responses fell into for each question (or if there was
not a clear majority, coding it as “all over the map”), and
did the same for the our team’s responses. The results were
that the team’s intuitions were correct for 7 of 25 questions
and incorrect for 11 of the 25 questions; for the remaining 7
questions, the team itself did not agree on how users would
respond. This addition to the survey process provides a nice
indication of its value as a design tool, and helps counter
the post hoc tendency to believe that the survey results were
‘obvious’ from the beginning.

 4

THE LOOPS SYSTEM
Loops consists of a set of user-definable rooms, each of
which can contain a conversation, URLs, static text, and
people, as well as user interface elements for seeing who is
present, viewing, navigating and modifying the
environment. The user experience is that people log in to a
Loops server and move from room to room, reading
conversations that have changed in their absence,
contributing new comments, and encountering other users
as they do so. As with Babble, the ultimate goal is that
Loops feel like an inhabited place where users may ‘hang
out’ during the day as they work on their computers, or into
which they may occasionally venture to see what has
happened in their absence.

An Overview of the User Interface
We’ll begin with an overview of the user interface elements
of Loops shown in figure 1:
1. The social proxy depicts people as dots, showing who

and how many are in the room and their activity levels.
2. The chat pane is where those in the room ‘talk.’
3. Each room can have slide-out tabs that can contain

publicly viewable and editable text and URLs.
4. The places list shows the rooms, indicates which have

new content, and provides a menu of room commands.
5. The people list shows who is logged in, and provides

access to various person-centered functionality.
6. Each room has a bulletin board that is viewable and

editable by all those in the room.
Or, more holistically, figure 1 shows the “Commons” room
of the “SCG” Loop. We can see from the social proxy (1),
that there are five people in the Commons room, three of
whom are active, carrying on the chat shown in the chat
pane (2). From the point of view of the user whose screen
we are seeing, there is no new content elsewhere in the
Loop —otherwise there would be red indicators next to
other rooms in the places list (4). The two tabs (3) contain a
list of contact numbers for the Loop’s members, and a dial-
in number and access code for conference calling. The
bulletin board (6) contains a reminder of an upcoming
meeting, with added text stating that it has been cancelled,
and a subsequent reaction.

Now we will take a somewhat more in-depth look at
functionality.

Awareness and Conversation
Because the awareness and conversation models of Loops
are derived from the Babble system, and are not the focus
of this paper, we’ll keep our remarks brief.

The chief awareness interface element is the social proxy
(callout 1, figure 1). The circle represents the room being
viewed; the colored dots represent people. A dot shown
inside the circle means that that user is in the current room;
when users are active (meaning that either they type or
click) their dots move to the inner (white) core of the circle

Figure 1. The Loops user interface, including 1) a visualization of the presence and activity of participants, 2) a chat area the
supports synchronous or asynchronous conversation, 3) public slide out tabs that can hold editable text and URLs; 4) a list of

rooms, 5) a list of people who are present, and 6) a public bulletin board the can contain editable text and URLs. NB: The image
has been edited to remove about a third of its height; the gray circles and rectangles are callouts and not part of the interface.

 5

(as with the dots at 1, 3 and 8 o’clock), and then, over the
course of 15 minutes, they drift to the edge of the circle (as
with the dots at 5 and 10 o’clock). Mousing over a dot
reveals the name of the user, and mousing down on a dot
brings up a menu of commands for either changing one’s
preferences (if it’s one’s own dot), or for interacting with
other users (if it’s another’s dot).

Loops also contains a social proxy (figure x) that shows
who has been present over the last week, and how often
they have spoken. In this proxy, each user has a row, they
leave a flat line if they are present, and they make a blip
when they speak. Thus, the timeline shown in figure 2
shows six people, all of whom have spoken between 12 and
14 hundred hours. Mousing over the lines, as with the other
proxy, reveals information about the speaker and time and
place of speaking, and mousing down brings up a command
menu.

The persistent chat pane (callout 2 of Figure 1) displays a
conversation as a time-stamped list of comments in a single
window, enabling either synchronous or asynchronous talk.
Comments are added by clicking on the “speech bubble”
button at the bottom of the chat pane, or simply by
beginning to type; this brings up a floating window in
which the comment may be composed. The use of a
floating composition window—unlike that provided by
many synchronous chat clients—is to enable those writing
comments to move from room to room while composing a
comment, thus making it easier to compose synthetic or
integrative comments. Once a user posts a comment, it
immediately appears in the conversation. For users who are
in other rooms, the name of the room turns red to indicate
the new content, and when they enter the room, chat text
that is new since their last visit is shown in red.

Bulletin Boards and Tabs for ‘Publishing’ Text
Loops tabs and bulletin boards are the design response to
the requirement to provide a means of publishing text
outside of conversations.

Bulletin boards (Figure 1, callout 6) provide a means for
posting text and URLs in a highly visible place. Each room
has its own bulletin board, and its text may be edited by
anyone in the room. When new or changed text is posted to
a bulletin board, the new text is signaled to those in the
room by the background color of the bulletin board fading

out and then fading back in with the new text displayed. If
there is more text than fits in the visible area of the bulletin
board, a scroll bar appears. We anticipated that bulletin
boards would be used for purposes ranging from
announcements and reminders (as seen in figure 1), to
MUD-like scene setting (e.g. “You see a messy office.”),
based on observations of and comments from Babble users.

The other means of making information readily available is
the tab (figure 3). The tabs peek out from behind the
conversation pane. Clicking on the tab causes it to slide out,
revealing the (editable) information on it. Each room can
contain up to three tabs; rooms begin without tabs, and
users can create them by pressing the “+” button (above the
top tab in figure 1). The lower part of each tab (not shown)
provides access to controls for setting its background color,
clearing its content, and deleting the tab. We expected that
tabs would be used for activities such as sharing schedules
(as in figure 3), lists of URLs, and keeping to do lists.

The Loops Launcher
A final part of the Loops UI is the launching screen,
partially shown in figure 4. This was a consequence of the
requirement for supporting membership in multiple
communities. It provides a single location where users of
multiple Loops can sign on once, and have access to all
Loops of which they are members. It also provides a place

Figure 3 [cropped]. Two tabs: one fully opened (“Misc

Notes”), the second sliding out over the first.

Figure 2. The Loops timeline proxy.

Figure 4 [cropped]. The Loops Launcher provides a view of
all Loops communities hosted by a server; it provides single

sign-on access to users of multiple communities.

 6

where Loops users can create their own Loop (via the
“Administration” menu). The new Loop is automatically set
up, although users who are not members of other Loops
must be added to the Loops environment by a system
administrator. We had hoped to have the individual Loops
icons reflect the degree of activity in each Loop, but this
was not possible during our implementation time frame.

DEPLOYING LOOPS
In this section we discuss the results of our deployments.
We will begin by describing some of the ways in which
Loops users have made use of tabs and bulletin boards.
Then we will turn to the more general question of the over
all success of Loops deployments, and provide a profile of
one of the most successful Loops.

Usage of Tabs and Bulletin Boards
In general, tabs and bulletin boards have been used much in
the way we envisioned.

Bulletin boards are typically used for announcements;
figure 5 shows three examples. The second example (under
“Important Dates”) is a typical one: it states the time and
call in number for a recurring phone meeting. The first and
third examples in figure 5 are more interesting. The first
example shows the bulletin board used to arrange meetings.
Here, one person has proposed a set of possible times for a
meeting. Initially the organizer put a “1” next to each time,
indicating that she could make each; others came along and
incremented the numbers as was appropriate. Later, another
user added a plus sign as away of indicating that a time
was preferred. The third example shows a similar case,
except here participants are initialing the announcement to
indicate agreement. Note that there is no way to identify
who has written what on the bulletin board, and thus this
type of use requires (and indicates) everyone to trust that

their colleagues will not ‘cheat’ by casting multiple ‘votes’
or forging initials. While have observed other more ludic
uses of bulletin boards—drawing character graphics
pictures, playing tic-tac-toe (very awkwardly)—most uses
are for announcing meetings and reminding of deadlines.

Tabs are used in ways that are similar to bulletin boards,
although (obviously) not for announcements. Generally
they are used for lists (of phone numbers, emails, URLs),
schedules, and (occasionally) for rough notes. Occasionally
attempts have been made to use them as a collaborative
editing tool: In one case, tabs were used to compose a piece
of text, with the chat pane being for question, answers and
comments. However, as tabs do not provide an edit lock,
support any sort of rich text, and indeed provide only an
narrow writing area, this is not really a viable use.

While these uses of tabs and bulletin boards are nothing out
of the ordinary, they provide a useful boost in functionality,
particularly in tandem with the other features of Loops. For
example, one might find a Loops room devoted to a
particular project, where the bulletin board is used to
announce the next meeting time, a tab holds the number and
passcode for the conference call, and the chat pane is used
to take notes as the meeting occurs.

Deployments
As of this writing, we have fully deployed Loops to about
six groups.1 The success of our deployments has been
mixed, although it is a bit difficult to specify what counts as
success. There are at least three possible definitions of
success: that the system is sufficiently functional that the
group is able to use it to interact; that the system enables the
group to achieve one or more goals; or that the system, once
taken up, becomes part of the group’s practice and is used
for as long as the group exists. Each of these definitions has
problems. If the system is usable but doesn’t meet the needs
of the group, it is a rather weak definition of success. If the
system enables the group to achieve one or more goals,
success depends on how ambitious the goal is—supporting
a two hour brainstorming session is easier to achieve than
providing a permanent online group meeting space; it is
also the case the members of a group may have multiple,
and even differing, goals. Finally, if we define success as
permanent adoption by the group, we rule out legitimate
uses for limited duration activities; we also have the

1 It is not always clear what to count as a “deployment.”
Anyone who is a member of any Loop has the power to
create a new one from the Loops Launcher page; thus, it is
possible to quickly generate a Loop for a person or group
interested in a demo, although they have no intention of
using it for a long period. Here we use the term deployment
for cases in which we went through a dialog with the
prospective users, identified a facilitator, and made sure that
the facilitator circulated a welcome message with usage
instructions and advice on running a community.

Figure 5. Two forms of bulletin board usage on one
bulletin board: voting for a meeting time (top and

bottom), and announcements (middle).

 7

difficulty of deciding when to declare adoption permanent,
and how long to wait until declaring that a deployment has
failed (which, as we shall see, is a non-trivial decision).

For the purposes of this paper, we will consider the first and
last definitions. For the first, sustained usage, we will count
a deployment as successful if it has continued activity for
eight weeks or longer. This admittedly arbitrary metric is
based on our experience with Babble deployments, where
we found that most Babbles would experience usage
activity for the first several weeks, and that at about the six
week mark we would see either a drop off in activity
leading to the demise of the deployment, or a continuation
of activity for a much longer period of time [1]. In terms of
this metric, five of the six Loops we’ve fully deployed have
been successful (the sixth has not been running long enough
to say). In terms of the last definition of permanent use,
three of the six are successful (again omitting the sixth,
which has been running for about two weeks.

Is this good or bad? It’s not clear. Rather surprisingly, we
know of no studies that report adoption rates for groupware
applications (by any measure of success). We do know that
adoption of even proven applications is a non trivial process
affected by variables ranging from individual factors (e.g.
17] to social and organizational factors [16] Certainly, in
our own experience it is not uncommon for attempts to
make use of shared databases (within our organization) or
mailing lists (outside of our organization), to begin with a
burst of activity only to quickly subside into non-use.
Clearly, more investigation is called for.

A Close Look at a Successful Deployment
In this section we take a close look at a successful
deployment to a group we will call Fargo. Fargo is
interesting, not just because it sheds light on how Loops is
being used, but because its usage patterns are at odds with
what we would expect. (A detailed ethnographic study of
Fargo’s use of Loops may be found in [10].)

Fargo is a group of about 28 people distributed over 5 sites:
New York; North Carolina; Japan, India and Zurich. They
are involved in a software development project, and the
team includes managers, programmers, and testers. Fargo’s
development cycle consists of major code releases every six
months, and incremental build releases every one to three
months.

Fargo is an interesting case to look at because it is an
example of a successful Loop that, by our first definition,
had failed. This can be seen in figure 6, which shows a ten
month segment of Fargo’s posting patterns. What we see is
that at the end of its first two months, Fargo’s posts had
dropped to nearly zero, and continued at a low level for the
next two months. At the end of the fourth month we had
concluded that Fargo had died, and were therefore quite
surprised, a few weeks later, to receive an urgent call from
the Fargo facilitator during a server outage.

As it turned out, the Fargo team was using Loops quite
vigorously, but only during the weeks when they were
approaching a code release and needed to communicate as
quickly and widely as possible. At other times, the
members of Fargo, especially the programmers, abandoned
Loops and used more asynchronous means of
communication.

CONCLUSIONS
In this paper we describe the design of Loops, a second-
generation web-based conversation environment designed
for corporate work groups. Beginning with the design
rationale derived from our experience with the first
generation system, we describe Loops’ development via
‘group testing,’ and the resulting user interface. Finally, we
describe our experiences in deploying it to six groups.

While we think that our experience has useful lessons for
developers—particularly along the lines of the ‘group
testing’ process—the most significant conclusion we’ve
drawn from our own work is that our initial focus on
designing online environments as places for community has
led us astray. While providing a permanent online space for
a group is certainly a valuable end, it is becoming
increasingly clear that this is not the only usage model. The
Fargo loop is a case in point. Fargo uses its Loop as a war
room; it moves in for one phase of its development cycle,
and then abandons it for other communication channel
(which often means little communication among the more
disparate parts of the team). We can point to other uses of
Loops and Babble that have similar characteristics,
although there the Loop functions more as a one time
meeting room.

If we relax the notion of Loops as being a space for an
online community, a place where people hang out and
where they return to day after day, it suggests a number of
directions for future work. First, it should be as easy to
create and enter a Loop as it is to grab an unoccupied
meeting room. While we have made some strides in this
direction, we have need a much lighter weight way of
adding new members to the Loops environment. Second, it
should be easy to bring material into a Loop, work with it
there, and take it away afterwards. As Loops is now, cut
and paste is the primary import and export mechanism; this
does not seem adequate. Third, Loops’ simple membership
model—you’re either in the community or your not—needs
to become considerably more sophisticated. If a Loop

0
1
2
3
4
5
6
7
8
9

10

H
un

dr
ed

s
of

 p
os

ts

Figure 6. Posts per week (in hundreds of posts) in Fargo

 over the first 10 months

 8

becomes more like a meeting room, there is a greater need
for roles—and their accompanying privileges and
responsibilities—than there is in a tight knit community.
Finally, if Loops becomes more of an occasionally
occupied space, as is the case with Fargo, there need to be
means for alerting participants when the meeting or event is
about to start.

ACKNOWLEDGEMENTS
Thanks to everyone who helped. To be done post- post-
anonymization.

REFERENCES
1. Bradner, E., Kellogg, W, & Erickson, T. Bradner, E.,

Kellogg, W, & Erickson, T. The Adoption and Use of
Babble: A Field Study of Chat in the Workplace. Proc.
ECSCW 1999. Kluwer (1999), 139-158.

2. Bruckman, A. & Resnick, M. The MEDIAMOO project:
Constructionism and professional community.
Convergence, 1(1) 1995.

3. Cherny, L. Conversation and Community: Chat in a
Virtual World. CSLI Publications, 1999.

4. Churchill, E. F. and Bly, S. Virtual environments at
work: ongoing use of MUDs in the workplace.
Proceedings of the international joint conference on
Work activities coordination and collaboration, 1999,
99-108.

5. Erickson, T. and Kellogg, W.A. Erickson, T. and
Kellogg, W. Social Translucence: An Approach to
Designing Systems that Mesh with Social Processes.
Transactions on Computer-Human Interaction. 7, 1
(2000) 59-83.

6. Erickson, T. and Kellogg, W.A. Knowledge
Communities: Online Environments for Supporting
Knowledge Management and Its Social Context.
Sharing Expertise: Beyond Knowledge Management
(eds. M. Ackerman, V. Pipek, V Wulf). MIT Press,
2003, 299-325.

7. Erickson, T. Smith, D. N., Kellogg, W. A., Laff, M. R.,
Richards, J. T., and Bradner, E. Socially Translucent
Systems: Social Proxies, Persistent Conversation, and
the Design of ‘Babble.’ Proc. CHI 1999. ACM Press,
1999, 72-79.

8. Gutwin, C., Greenberg, S., and Roseman, M. (1996)
Workspace Awareness Support with Radar Views. Ext.
Abstracts CHI 1996, ACM Press (1996) 210-211

9. Guzdial, M. (1997) Information ecology of
collaborations in educational settings: Influence of tool.
Proc. CSCL 1997. Toronto, Ontario, Canada. p. 83-90.

10.Halverson, C., Erickson, T. and Sussman, J. What
counts as success? Rhythmic Patterns of use in a

persistent chat environment. To appear in Proc. GROUP
2003. ACM Press (2003).

11.Herbsleb, J. D., Atkins, D. L., Boyer, D. G., Handel, M.
and Finholt, T. A. Introducing Instant Messaging and
Chat in the Workplace. Proc. CHI 2002. ACM Press
(2002), 171-178.

12.Hiltz, S.R. and Turoff, M. The Network Nation: Human
Communication via Computer. Revised edition, MIT
Press, 1993.

13.Houde , S. and Sellman, R. In search of design
principles for programming environments. Proc. CHI
1994, ACM Press (1994), 424-430.

14.Issacs, E., Walendowski, A., Whittaker, S., Schiano, D.
and Kamm, C. (2002) The Character, Functions, and
Styles of Instant Messaging in the Workplace. Proc.
CSCW 2002. ACM Press (2002), 11-20.

15.[NWB00] Nardi, B., Whittaker, S., and Bradner, E.
Interaction and outeraction: Instant messaginging action.
Proc. CSCW 2000, ACM Press (2000), 98-88.

16.Orlikowski, W. Learning from Notes: Organizational
issues in groupware implementation. Proc. CSCW '92:
ACM Press (1992), 362-369.

17.Orlikowski, W.J., Yates, J., Okamura, K., Fujimoto, M.
Shaping Electronic Communication: The Meta-
structuring of Technology. Organization Science. 6(4)
July-August 1995

18.Rheingold, H. The Virtual Community. Addison Wesley,
1993.

19.Roseman, M. and Greenberg, S. TeamRooms: Network
Places for Collaboration. Proc. CSCW 1996, ACM Press
(1996), 325-333.

20. Scardamalia, M., Bereiter, C., McLean, R. S. Swallow,
J. & Woodruff, E. Computer supported intentional
learning environments. Journal of Educational
Computing Research, 5, 1 (1989) 51-68.

21.Schlager, M., Fusco, J., & Schank, P. Cornerstones for
an on-line community of education professionals. IEEE
Technology and Society Magazine, 17(4), 1998, 15-21.

22. Viegas, F.B. and Donath, J. Chat Circles. Proc. CHI
1999, ACM Press (1999), 9-16.

23.Werry, C. C. (1996). Linguistic and interactional
features of Internet Relay Chat. Computer-mediated
communication: Linguistic, social and cross-cultural
perspectives (ed. S. Herring), John Benjamins, 47-63

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	DESIGN RATIONALE
	About Babble
	Four Requirements
	Supporting Deployment and Updating
	A Changeable Look and Feel
	Support for ‘Publishing’ Text
	Support Membership in Multiple Communities

	The Foundations of the Loops System

	RELATED WORK
	THE DEVELOPMENT AND EVALUATION OF LOOPS
	The Test Drives

	THE LOOPS SYSTEM
	An Overview of the User Interface
	Awareness and Conversation
	Bulletin Boards and Tabs for ‘Publishing’ Text
	The Loops Launcher

	DEPLOYING LOOPS
	Usage of Tabs and Bulletin Boards
	Deployments
	A Close Look at a Successful Deployment

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

