
The Design of Loops: A Web-Based Environment for
Persistent Conversation and Community

Thomas Erickson, Christine Halverson, Wendy A. Kellogg,
Mark Laff, Jeremy Sussman, Tracee Wolf

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, USA

+1 914 784-6659
{snowfall|krys|wkellogg|mrl|jsussman|tlwolf}@us.ibm.com

ABSTRACT
We describe the design of Loops, a second-generation
CMC system aimed at small to medium-sized groups in a
corporate environment. We discuss the rationale behind the
system, its goals, their realization in an implemented
architecture and user interface, and our initial experiences
with deployments of the system to two groups. In the
course of this discussion we discuss two secondary themes:
our design-oriented approach to research that focuses on
system implementation and deployment; and our
observations of and designs for the use of simple text for a
wide variety of collaborative purposes.

Keywords
Awareness, Chat, Computer Mediated Communication,
CMC, Conversation, Community, Design, Design
Research, Structure, Text, Social Proxies, Visualization.

INTRODUCTION
Our chief goal is to design “socially translucent” systems
— systems that convey social information and context by
providing visual cues about the presence and activity of
participants. We argue that such systems can, by taking
advantage of the human ability to make inferences from
traces of activity, provide an environment that supports a
wide range of social processes (e.g. imitation; peer
pressure) which permit groups to function effectively.

Our approach to making social information visible employs
two tactics: social proxies and persistent conversation and
social proxies. Social proxies are minimalist graphical
representation of the presence and activity of participants;
their aim is to provide a sense of both the synchronous and
asynchronous activity in an online system. Persistent
conversation refers to text-based computer mediated
communication that persists over time. In particular, we
find that chat — synchronous or near synchronous text-
based CMC — is a rich source of social information due to

both the expressiveness inherent in written language, and
the variety of expressive mechanisms (e.g. emoticons) that
CMC users have developed (see [3] for many examples).

Up to this point, our work has been embodied in a first-
generation system called “Babble.” Babble is an online,
conversation-centric system designed to support small to
medium-size workgroups. In a series of publications we’ve
described the design of the system [6], the “social
translucence” rationale behind it [5], and studies of
deployments and adoption of the system [1]. In most of
this work we have kept the focus on Babble’s most notable
feature, its social proxies.

This paper draws upon this previous work, but opens up
some new areas of discussion. Its primary aim is to
describe the design of a second generation system called
Loops. Thus we discuss the goals of the Loops design, the
rationale behind these goals, their realization in an
implemented architecture and user interface, and our
experiences with initial usage and deployments. In this
paper we will focus on the way in which text has been used
in unexpected ways in the Babble system, and the design
of new interface elements for Loops intended to support the
observed use. In the process of telling this story, we will
also discuss our development process, and the way in
which our design-oriented approach to research has shaped
the system we’ve developed.

This paper begins by providing background on the design
context in general, and the Babble system in particular. In
the next section we lay out the factors that shaped the
design of Loops; we devote particular attention to
examining how users constructed structures within the
weakly-structured Babble environment. In the third section
we describe the architecture and user interface of Loops.
Finally we discuss our experiences with the working
systems, include its deployment and use by thirty people..

BACKGROUND
Before turning to the factors which specifically drove the
design of Loops, we’ll say a bit about the context in which
development occurred. Here we describe the position and
role of the development group, the general situations for
which we were designing, and the nature and use of the
first generation system to which Loops was a response.

.

Design Research
In understanding the various forces that shaped the design
of Loops, a good place to begin is with the context in
which the design takes place. Our group is situated in the
research division of a large corporation, and our charter is
to carry out “adventurous research,” that is, research that
does not necessarily play into company’s product
development strategies.

Our work is best described by the rubric “design research.”
That is, conduct our research by embodying a variety of
claims or conjectures in design prototypes, and then seeing
how they play out that context. While some of this work
may involve various forms of reflection and critique
familiar to designers, or the genre of ‘user studies’ most
familiar to HCI audiences, most of our work proceeds via
the creation, implementation, and deployment of working
systems to actual workgroups.

This implementation and deployment centered approach has
a number of advantages. First, because our research agenda
has to do with how to support social processes, it is in our
best interest to be able to deploy robust, working systems
to real work groups. Group-based activity takes weeks to
months to coalesce, and the only effective way we see of
studying it is to observe it ‘in the wild.’ Second, even
though we are chartered to do “adventurous research,” it is
nevertheless very useful to be able to point to working
systems being used by internal groups as an additional way
in which we are ‘returning value’ to the company. This is
particularly valuable at a time when industry-based research
does not seem to be faring well. Third, since part of our
mission is to influence product development groups to
adopt our ideas, having working systems deployed to
dozens to hundreds of people is a useful way of distancing
ourselves from the stereotype of ‘blue sky’ researchers
sometimes found in more development oriented groups.
Finally, having an existing set of users — or, more
particularly, an existing set of groups-as-users — provides
us with a readily available means of testing everything
from vague ideas to new systems.

We emphasize the advantages of our implement-and-deploy
approach because it has a lot of costs. These stem, of
course, from the need to construct systems which are
sufficiently robust that they can be deployed to other
workgroups. Ideally, as has been the case with Babble, the
system will not only be robust, but will be sufficiently
attractive to entice a number of groups into using the
system. And this, in its turn, means that the ability to
easily deploy and update the system is critical—something
which became an important factor in the design of Loops.

The Babble System
Our first generation system, a Smalltalk-based client and
server system, was called Babble. Here we provide a very
brief description of it; interested readers should see [6] for
more details of its design.

Babble was designed to serve the needs of small to
medium sized corporate work groups. It was intended to
provide a semi-private online conversation area where
members of groups such as workgroups, committees, and

special purpose task forces could have text-based
synchronous or asynchronous conversations. Among the
assumptions embodied in Babble were that the groups
would be relatively small, that most participants would
know one another or of one another, and that, because
participants were identified and situated in an
organizational context, there would be considerable pressure
to behave responsibly.

Figure 1 shows a screenshot of the Babble user interface.
From the upper left its basic components are: the list of
users who are currently logged on; a visualization of the
presence and degree of activity of users called a social
proxy; a hierarchical topic list of user-definable
conversations; and, in the lower half of the window, the
text of the current conversation. There are three things to
note. First, although Babble resembles a chat system, the
conversation in Babble may be synchronous or
asynchronous: that is, remarks may be separated by seconds
or by minutes, days or months. Second, Babble provides a
number of cues about who is present and what is new. The
social proxy in the upper middle pane shows not only who
is in the current conversation (the dots within the circle),
but how recently the participants have ‘spoken’, i.e. typed,
or ‘listened’, i.e. clicked or scrolled (via the proximity of
the marbles to the circle’s center). The topic list in the
upper right pane has ‘mini-proxies’ next to a conversation
name if anyone is in it (e.g. the third topic), and displays
the topic name in red if it contains material the user hasn’t
seen. The third point to note is that the topic list is user
definable: that is, users can create new conversation topics,
rename them, and organize them hierarchically in nested
categories — we will examine examples of such
organization when we turn to the issue of structure.

Babble Deployments
Over the past four and a half years we have deployed
Babble to about two dozen groups. Most, though not all,
deployments have been within our company to groups such
as official (i.e. organizationally defined) work groups, ad
hoc task forces, and special interest groups. Most
deployments have been intended to provide environments
for long term collaboration, although some have been

Figure 1. The Babble user interface.

deployed to support shorter term online events (ranging
from three days to a month or so).

Our success in deploying Babble has been mixed. Initially,
we had limited success in getting groups to use Babble for
lengthy periods of time. Although almost all groups
initially used Babble enthusiastically, usage often fell off
after about six weeks (see [Brader1999]). Over time, based
on our observations of successful deployments, we
developed a screening process, advice for moderators, and
suggestions for new users, that appear to have increased the
rate of successful adoption. In the last year, the primary
diffusion of new Babbles has been via word of mouth: that
is, a member of an existing Babble requests a new
deployment to support some other group in which he or
she participates and takes charge of launching and
moderating it; in these cases the presence of one or more
experienced ‘Babblers’ seems very beneficial to adoption.

FACTORS THAT SHAPED LOOPS
The design of Loops was shaped by three factors:
deployment logistics; the desire to retain the most
successful features of Babble; and the desire to support the
creation structure within the online environment.

Deployment Logistics
As already noted, the ability to successfully create and
deploy working systems to groups is critical to the success
of our design research approach. This is particularly true if
the system turns out to be popular, as has Babble.

Babble was not easy to deploy. The client, written in
Smalltalk, was 2 to 3 megabytes in size. This meant that
installation was non-trivial: users had to run an installation
package that they usually downloaded from the network.
The drawback is that this leaves the timing of the install up
to individuals, and thus installation in most groups was
staggered across several days. This made it more likely that
those who installed Babble right away would log on and,
finding no one to talk to, be uninclined to return.

Because Babble was a research prototype, it changed over
time. This lead to the problem of trying to maintain
compatibility across versions. Considerable efforts — in
both programming and testing — were made to make sure
that changes to the server or client did not break older
versions of the client. However, incompatibilities did arise,
sometimes by accident, and sometimes due to the desire to
add new functionality that required fundamental changes.
When this happened, all users need to reinstall more or less
simultaneously, or lose access to the Babble environment
when the server changed or incompatible clients came on
line. The first case was difficult to manage for the reasons
already mentioned; the second was disruptive to group use.

A third problem arose when trying to deploy to tightly
administered environments. For example, one deployment
of Babble was to a University class, which meant that
Babble needed to be available in the public University
computer labs. However, the lab administrators were wary
of installing ‘experimental’ software on their lab machines,
fearing that it might crash, corrupt disks, or have
infelicitous interactions with other software. This particular
problem was solved by creating a version of Babble that

ran off a CD-ROM and kept its user-specific files on a
diskette — however, this was not really a viable long term
solution, and it exacerbated the update problem by
requiring the burning of new CDs. While deploying to a
public lab is a special case, note that similar concerns arise
in most mission critical environments, such as help desks,
sales support operations, etc., as well as any environment
where hardware and software support is centrally controlled.

In considering the next generation design, each of these
problems pushed us in the direction of developing a web-
based client that could be run within a standard browser.
Such a solution addresses the deployment problems that are
inherent in the design research approach we’re pursuing, as
well as making it easier to support multiple hardware and
OS platforms, and people using multiple machines.
However, we were rather reluctant to pursue this approach,
because of the issues we discuss in the next section.

Retaining and Enhancing What Worked
Our experience with and studies of Babble left us
convinced that it got quite a few things right. The principle
features of Babble that we wished to retain were:
• The lightweight, blended synchrony, just-start-typing

conversation model.
• The social proxy and other features that created an

awareness of participants’ presence and activity.
• The sense of history and inhabitation that resulted

from the persistence of conversation and other signs of
activity over time.

One of our concerns was that our emphasis on synchrony,
awareness, presence, and inhabitation might prove difficult
in an environment that was fundamentally asynchronous
and lacked any concept of state. That is, whereas the
Babble clients maintain a continuous connection to the
server, web browsers do not: they connect with the server
only to send or receive information. It was not immediately
clear to us how to maintain the feeling of presence (i.e. that
users are continuously connected to the environment), and
we were concerned that we might end up trying to maintain
an illusion with no infrastructural means of support.

In addition to these infrastructure concerns, we were also
interested in creating an engaging user experience. We had
two goals. First, we wanted freedom to use a range of
subtle visual and auditory effects in designing successors
to the Babble social proxies. Second, we wanted to allow
our interaction designer to directly work in the medium,
rather than having design prototypes reinterpreted by a
programmer. As noted by Houde and Sellman [7], most
development environments do a good job of supporting
design or programming, but not both. Although we
explored alternatives, these user experience goals eventually
lead us to build the Loops client in Macromedia’s Flash,
an environment well-known for its ability to support the
creation of interactive animations that can play in browsers.

Supporting Structure
As already described, we have considerable experience in
deploying Babble. While we have discussed many aspects
of our studies elsewhere, we have said little about how
users have actually turned Babble to their own ends. In this

section, we examine some of the ways in which Babble
users have structured information within Babble to support
their needs. We consider this structuring quite significant
because Babble provides only rudimentary support for it.

To begin with, we need to say a bit more about how
structure is created in Babble. Basically, Babble allows any
user to create or rename the topics and categories shown in
the hierarchical topics list (Figure 3, upper right). Topics
are simply names for single conversations (analogous to
documents in a GUI-sense), and categories are a means of
grouping conversations (analogous to folders) which can
contain topics or sub-categories. The only way to create
structure in Babble is by creating named hierarchies of
categories and topics.

For the purpose of this paper, we will look at data drawn
from the five active Babble deployments (see Table 1 for a
summary). It is important to note that the explicit analysis
we present here did not drive the design; it is really to
persuade the reader. Having spent years watching the users
of dozens of Babbles structure and re-structure their
environments, the conclusions drawn from this data were
already evident to us.

Perhaps the most obvious feature of these Babble
deployments are the number of categories and topics and
categories in evidence. The number of user-created topics
and categories per Babble ranges from 62 to 170, with the
average being 129 (these counts exclude automatic archives
of conversations generated by the system, and topics and
categories that users deleted). When one considers that there
are a relatively small number of regular, active users who
contribute to conversations (typically 10 to 20, but around
30 for B1), this is quite a lot. Why is this happening?

What we see when we look at the lists of categories and
topics is that quite a bit of the structure which has been
generated is for presenting and organizing static
information. That is, conversation topics are often not used
for conversation. Instead, what we see is that users are
trying to create meaningful structures which, while they
often contain niches for conversation, are larger in scope.

Table 1 summarizes the most common types of structure
observed across Babbles. These include personal places
(places ‘owned’ by a particular user), structures intended to
support events (e.g. an upcoming conference) or projects,
and places for announcements. Note that the counts shown
in Table 1 are quite conservative; they reflect only existing
structure (not structure created and later deleted by users),
and only structures that are named so that an outsider can
recognize their purpose.

The most prevalent form of structure is what we will refer
to as an ‘office’. Offices are topics, or, most often,
hierarchies of categories and topics, that ‘belong to’ and are
named after a user. The third row of Table 1 shows the
number of distinct offices in each Babble (the top number),
the total number of topics and categories devoted to offices
(the second number), and the percentage of structure in that
deployment that is devoted to offices. As Table 1 shows,
offices comprise from one to three quarters of the structure

(i.e. number of category names and topic names) in these
Babble deployments. A common form for an office is:

Pat’s Place
About Me
Talk with Me

the first item being a category, and the next two items
being topics contained within it. The first topic is typically
intended to contain a profile of the person, and the second
as a place for conversation.

The event and project structures shown in row 4 are similar
offices, in that they distinguish between topics intended for
conversation and topics for information, although they
typically contain much more structure. For example, one
Babble uses project names as categories, and underneath the
project name uses topics with names like “Current status”,
“Meet the project members”, and “Tell us what you
think!” In general, this approach, of using some topics to

contain static information, and designating particular topics
as specially for conversation, occurs across all Babble
deployments for a variety of different types of structures.

Another structural feature found in most Babble
deployments is the attempt to explicitly or implicitly create
one or more topics or categories for announcements (row 5
of Table 1). Most often these are named “Announcements;”
other examples are “Heads Up!,” “News,” and special
purpose announcements like “Kittens Free to a Good
Home!” (However, most announcement structures do not
seem successful, judging by their degree of use; one of the
moderators reports that people wouldn’t come to the
announcements topic quickly enough, and so he shifted to
posting announcements in a topic where most participants
in that Babble ‘hung out.’)

To summarize, throughout the various deployments it is
clear that users are doing more than creating places to talk.
First, they are trying to display static information in a
readily accessible way. Thus, they resort to using topic
names to signal whether the topic is supposed to be a place
for conversation (e.g. “Talk to me!” “Questions,” “Chit-
chat,” “Discuss <Project Name> Here”), or whether it is
primarily informational (“About Me,” “<Project Name>
Status,” “About”). Second, users are trying to make certain
types of information visible. The most obvious example of
this is the “Announcements” topic, which, by virtue of its
name, appears at the top of the alphabetically sorted list.
Third, and more generally, all five Babbles exhibit
attempts to structure topics within particular categories by

B1 B2 B3 B4 B5

Months of use 10 6 6 6 5

Total structure in terms of
of topics + categories

141 147 170 62 126

of distinct ‘offices’
 Amount of structure (t+c)
 % of total structure

28
90
64%

47
109
74%

20
46
27%

15
38
62%

12
33
26%

distinct events/projects
 Amount of structure (t+c)

3
14

1
9

2
19

1
1

3
53

announcement topics
 Amount of structure (t+c)

1
1

0
0

2
2

2
2

3
3

Table 1. Summary of the use of structure — topics (t) and
categories (c) —in five active Babble deployments.

using numbers or punctuation characters as prefixes to
control their sorting order (most often trying to put
informational topics first in the list as with “-Where to
Start”). Both the desire to display structured static
information, and the desire to control the visibility of
information, are taken up in the design of Loops.

LOOPS: THE WORKING SYSTEM
Thus far we’ve described our overall goals, the design
context, and the factors which shaped the design of Loops.
In this section we describe the resulting system. Currently,
all the major functionality is implemented, and we have, in
the last week, upgraded our client code base from Flash 5
to Flash 6, which has resulted in an enormous
improvement in performance and in the elimination of
some of the most vexing bugs.

Conceptually, Loops consists of a set of user-definable
rooms, each of which can contain a conversation, tools,
documents, static text, and people. The basic user
experience is that people connect to Loops server, and
move from room to room, reading conversations that have
changed in their absence, contributing new comments to
synchronous or asynchronous conversations, and
encountering other users as they do so. As with Babble, the
ultimate goal is that Loops feel like an inhabited place in
which users may ‘hang out’ during the day as they work on
their computers, or into which they may occasionally
venture to see what has happened in their absence.

The Architecture
Loops uses a client-server architecture, with the client and
server communicating via TCP/IP, with content coded in
XML. A server written in Java uses IBM’s DB2 database
as a persistent store; the client is implemented in
Macromedia’s Flash 6 and runs in any standard web
browser that supports the Flash 6 plug-in. The server

maintains a list of currently connected clients, the contents
of the Loop’s conversations, and a log of user activities
used to drive the Loop’s social proxy and other elements of
the interface that show traces or results of user activity.
This architecture allows us to track user location and
activity within the conversation space (e.g., which
conversation a user is ‘in’, how long since the user visited
or posted to a conversation, etc.), thus supporting the user
experience described in the next section.

Figure 2 illustrates how the architecture works. The story
begins with the user of client 1 entering a remark. The
client wraps the comment in XML (along with meta
information regarding the conversation it is being posted
to) and sends it to the server (e.g. the “Post_Item(text)”
request). Upon receipt, the server processes the request: it
verifies that the client has appropriate permissions, creates a
command by adding meta-information such as the
client_ID and time, and stores the command in its activity
log. Then, the server broadcasts the result to all connected
clients (e.g. the “I_Posted(client1,text,time)” command),
including the originating client. When the clients receive
the command from the server they act appropriately (in this
case, displaying the new comment in the conversation
window, and updating the social proxy to reflect client 1’s
activity).

This story is complicated by two factors. First, not all
users may be connected simultaneously. As shown in
Figure 2 (gray area), when Client 3 connects at a later time,
it issues a “Get_Activity” request to the server. The server
responds by sending it the activity and content for the
conversation that Client 3 is viewing (“I_Posted
(client1,text,time”)), which, in this example, is the same
conversation to which Client 1 originally posted. The
second complicating factor is the (common) case in which
all connected users are not viewing the same conversation.
Thus, suppose that Client 4 (not shown) was present when
Client 1’s comment was posted; but was viewing a
different conversation. In that case, Client 4 would receive
the same I_Posted command that the server broadcast to
Clients 1 and 2, but would use it differently: Client 4
would update elements of its social proxy (e.g. those that
show the time of Client 1’s recent activity) and may cache
Client 1’s comment. (A client caches conversations it is
not displaying only when it has previously visited that
conversation; otherwise, it does nothing and, if and when it
switched into Client 1’s conversation, it would use
Get_Activity to obtain the contents).

The User Interface
We’ll begin with an overview of the general interface
elements of Loops. The basic features shown on the screen
layout (Figure 3) are from left to right:
• the social proxy (upper left), which provides cues

about the awareness and presence of others, with a list
of users logged on below it as well as icons the
provide access to user-related functionality

• the pane where the text-based conversation occurs
• a row of slide-out tabs (peeking out from under the

conversation pane)
• three bulletin boards for editable static textFigure 2. The Architecture

• and, in the upper right portion of the screen are several
menus, most importantly the “Place List” which
enable users to move to (and create) other places in the
environment.

In addition, functionality is attached to the screen elements:
thus, the row of icons along the top of the user list (lower
left) enables management of user accounts and preferences,
whereas mousing down

Figure 3 shows a view of the Commons, the central
gathering place of this Loop. The particular contents of the
Commons are the conversation pane (showing a segment of
not-quite-synchronous banter), the social proxy (showing
that six people are in the room, and a seventh is logged on
but elsewhere in the Loop), the bulletin boards (containing
various announcements and reminders), and two tabs (one
containing a list of group phone numbers, and the other
information about a group number for conference calls).

Awareness and Conversation
Because the awareness and conversation models were
transposed from Babble, we’ll cover them briefly.

The chief awareness interface element is the social proxy,
the circle in the upper left corner of Figure 3. The circle
represents the conversation being viewed, and the colored
dots (referred to as marbles) represent people. A marble
inside the circle means that a user is in the current
conversation; when users are active (meaning that either
they type or click) their marbles move to the inner ring of
the circle (as in Figure 3), and then, over the course of 15
minutes, they drift to the edge of the circle. Marbles shown
outside the circle represent users who are connected to
Loops, but are viewing different conversations.

Loops implements the lightweight type-and-post,
conversation-in-one-window model that Babble supported.
A user adds to a conversation by clicking on the speech
bubble icon in the lower right corner of the conversation
pane and typing into a moveable dialog box. This
arrangement, which differs from instant messaging and
chat, allows users to refer to the either the existing
conversation, or to move to and copy from other
conversations, thus making it easier for them to create
responses that draw together different threads of
conversation. Once the user posts a comment, it
immediately appears in the conversation. For users who are
in other rooms (or who log on later), the name of the room
in the drop down places list turns red to indicate the new
content.

Static Structure: Bulletin Boards and Tabs
As noted earlier, there was considerable evidence that
Babble users
devoted a lot of
effort to making
information
accessible. In
response to this,
Loops provides
two ways of
structuring static
information:
bulletin boards
and tabs.

Bulletin boards
(Figure 3, right)
provide a means

Figure 3. The Loops User Interface (screen height reduced by a third).

Figure 4. An opened tab.

for posting text in a highly visible place. Each room has its
own bulletin board, and its text may be edited by anyone
who has write permission for the room. When new or
changed text is posted to a bulletin board, the new text is
signaled to those in the room by the background color of
the bulletin board fading out and then fading back in with
the new text displayed. We anticipated that bulletin boards
would be used for purposes ranging from announcements
and reminders, to MUD-like scene setting (e.g. “You see a
messy office.”), based on observations of and comments
from Babble users.

The other means of making information readily available is
the tab. Each room can contain up to three tabs. The tabs
peek out from behind the conversation pane. Clicking on
the tab causes it to slide out (Figure 4), revealing the
(editable) information on it. The lower portion of the tab
provides access to controls for setting its background color,
and clearing and deleting it. We expected that tabs would
be used for activities such as sharing lists of URLs,
schedules, and keeping to do lists.

One role that we expected both bulletin boards and tabs to
play is to visually distinguish rooms from one another. In
Babble, rooms looked almost identical; in Loops, the text
in the bulletin board, and the number, and colors and
names of tabs should make rooms feel more distinct.

EXPERIENCE WITH LOOPS
As of this writing, Loops has been implemented, mostly
debugged, and performance problems that were delaying
deployment have been solved with the release of Flash 6.
(Note that the test deployments reported here occurred
before the change to Flash 6.)

Now we turn to our experiences in using and deploying
Loops, and the lessons derived from them. We describe our
user groups, our methods for studying them, and report on
their opinions, feedback, and the usage practices we have
observed.

User Groups
We have three Loops deployments which are guiding our
evaluation and refinement of system.

The Lab Loop: Reflecting on Our Own Use
Our first source of experience is our own use of Loops. It is
our practice to live in the software we are developing. This
has obvious limitations — as its developers we are
obviously motivated to see the system succeed.
Nevertheless it is a valuable way to detect problems (if it’s
a problem for us, it will probably be a problem for
anyone), and through ongoing use to support our daily
activity, we gain experience of some of the possible ways
in which it may be turned to various ends.

The lab consists of six core participants who are members
of an officially defined corporate workgroup; there are also
a smaller number of participants from outside the offical
group, primarily associates and collaborators of lab
members. It is important to note that our lab is distributed
— two of our six members are remote workers and a third
is frequently on the road — and is thus we are, in fact, an
example of the sort of group for which the software is

intended. Furthermore we have used Babble as one of our
primary collaboration mechanisms for over four years, and
thus have a substantial repertoire of collaborative behaviors
that we wish to continue in the Loops environment.

Several attempts were made to shift our daily collaborative
activity from the Lab Babble to the Lab Loop; the first few
failed when our enthusiasm proved insufficient to
compensate for the performance limitations of early
versions and our very real need for an effective collaborative
environment to support our daily activity. Performance had
improved sufficiently by early January that all activity
shifted to the Loop; as of this writing, we have about three
months of group experience. For the purposes of this paper,
we will primarily draw upon our own usage of Loops as a
source of examples of how the system can be turned to
particular ends. For indications of its usability, opinions of
its value, etc., we turn to two other groups.

The Awareness Loop: A New Group
The Awareness Group is currently comprised of four people
(two others were invited but have not appeared); they are
not an official corporate group, but are instead collaborators
from different parts of the company who wish to be in
closer touch. The two core members of the group are close
collaborators and typically make heavy use of SameTime,
(an instant messaging application) to communicate with
one another. The members of the Awareness Loop
expressed interest in being beta-testers, and so, when
performance reached what we felt was an acceptable level,
we created a Loop for them, and invited them to ‘move in.’
As of this writing, they've been using Loops for about two
weeks. Except for requesting that they give us feedback,
there were no requirements or restrictions on their use.

The Net Weavers: A Test Drive by an Existing Community
The Net Weavers is a pre-existing cross-organizational
group whose goal is to foster the creation and maintenance
of communities within our global company. Net Weavers,
as a whole, consists of over 100 people; they use a variety
of mechanisms to interact, but in particular about thirty of
the members inhabit one of the most active Babble
deployments. We thought that their collective experience in
using Babble would make them an interesting test case for
Loops; similarly, the prospect of Loops ultimately
replacing Babble seemed as though it would motivate them
to be properly critical.

Because the Net Weavers’ principal organizer was concerned
about fragmenting the part of the community that used
Babble, we agreed to do a limited time trial, which we
called the “test drive.” We used a broadcast email to the
entire Netweaver’s mailing list, and created a guest account
to provide all comers with access to the Loop. Over the
four days of the test drive, 30 people accessed the Net
Weavers Loop, created their own accounts, and spent time
there, trying out features, providing feedback, and engaging
in the combination of banter and wide-ranging discussion
that characterizes online activity i the Net Weavers’ Babble.

Methods
Participant Observation
Our primary method of gathering information at this stage
of the design process is to observe and participate in the
Loops, noting confusions, questions, comments, and signs
of emerging practices. Since many people were typically
present at the same time, and since they had been explicitly
asked to provide feedback on the system, critiques often
took on a dialectic character. Sometimes agreement about
problems was easily arrived at; other times, disagreements
arose and led to discussions which revealed differences in
assumptions, prior experience, cultural values, previous
experience, etc.

A Survey of the Awareness and Net Weavers Loops
A potential drawback of the collective nature of this process
is that it may result in artificial emphases (or under
emphases) of certain problems. That is, a particular
problem may get a lot of discussion, not because it is the
most serious, but simply because it has become a
momentary focus of attention. Alternatively, people may
refrain from commenting on a problem, because they see
that it has already been discussed.

To try to get a clearer picture of users’ preferences and
priorities, we printed out transcripts of all discussion
(about 42,000 words of text), and did a rough analysis to
identify problems, controversies and suggestions. From
this we developed a structured survey was designed to be
circulated by email, and could be completed in no more
than 10 minutes. It was emailed to the thirty participants in
the Awareness and Net Weavers Loops, shortly after the
end of the Net Weavers Test Drive, and twenty one Loops
users completed the survey.

The main portion of the survey made four to five
statements about each element of the interface, and used a 7
interval scale (strongly disagree to strongly agree) to
quantify results. Statements ranged from probes about
particular details of the interface (“I liked the use of local
time stamps for each user (e.g. EST, GMT)” to elicitations
of general preferences (“I think bulletin boards are useful
and should be kept...”). The second part of the survey
asked users who were experienced with Babble to compare
the two systems, and asked more open ended questions,
including queries about which interface elements merited
the most screen space. The final part of the survey asked
users about their degree of experience with relevant
applications (e.g. Babble, Sametime), and the
characteristics of their hardware and software platforms.

General Usage and Preferences
In general, both groups made extensive use of Loops.
Between them, the Awareness and Net Weavers Loops
produced approximately 42,000 words (or 5,000 and 3,300
words per day of use, respectively). Individuals varied
considerably in their usage patterns, but the median user
reported logging onto Loops 3 times, and spending about 3
hours on line. We take the number of users, frequency of
use (including return visits), and amount of content
produced as a sign that the system is basically usable.

Although participants made frequent positive comments
about features of Loops in their online talk, we tend to
discount these, given that people often like to be ‘nice’ in
public situations and that positive comments may be
viewed as a way of taking the sting out of the more critical
remarks being solicited. We place more confidence in the
results of the surveys, which were filled out privately and
outside the excitement of ‘test driving’ a new system. In
particular, probes which asked Babble users (all but 5 of
the respondents) about their relative preferences for Babble
versus Loops gave encouraging results. One probe showed
a preference for Loops (14 agreeing, 2 neutral, 1
disagreeing) provided its performance problems and
obvious bugs were fixed (something accomplished with the
move to Flash 6). Another showed that only a minority
actually was against moving to Loops with no fixes
whatsoever (5 in favor, 3 neutral, and 6 against). The
definitive test will come, of course, when we give existing
Babble communities a chance to ‘vote with their feet.’

Feedback on Tabs and Bulletin Boards
The primary goal of our deployments in general, and of the
survey, in particular, was to get feedback on the relative
success of the interface elements of Loops. We were
particularly interested in the reception of the two brand new
elements, the tabs and bulletin boards. We were also
interested — based on our own experiences — in how new
users would react to a variety of changes (including
inability to implement certain details of Babble
interactivity) in the model for displaying and adding to
conversation, however we focus on tabs and bulletin boards
here.

With respect to the tabs and bulletin boards, we were
disconcerted to observe that there was considerable
confusion about whether the tabs and bulletin boards were
public areas or private ones. To us, a fundamental aspect of
Babble (and hence of Loops) was that everything in the
main window was public, and we expected most users (i.e.
those who were experienced Babble users) to share a similar
conceptual model. However, in our observations of the two
deployments, this did not appear to be the case: “Yow. So
when I thought I was typing a note to myself, I was really
broadcasting to everyone?” This is an example of
something we translated into a survey probe. According to
the survey, a substantial number of users reported initially
believing that tabs were private spaces (8 private, 12
public, 1 don’t know), but only a few believed the same of
bulletin boards (3 private; 14 public; 4 neutral or don’t
know). Of course, we have to be cautious at taking these
statements at face value, since they are retrospective reports
and some users may have been cued into the pubic nature
of each elements by discussion that had taken place by the
time they had arrived. The main takeaway point here is that
the public nature of tabs and bulletin boards needs more
design focus.

Other discussions raised issues about access control, usage
models, and the purposes of tabs and bulletin boards. For
example, strong opinions were expressed about limiting the
ability to delete material from tabs (“Dang Dang Dang
Dang Dang Dang.... This is now the third time I'm re-

writing the content for the [Net Weavers] Tab... Others
keep deleting this content!!!!!!!”), were mirrored in the
survey results. On the other hand, users were less concerned
about protecting the contents of bulletin boards, perhaps
because the were viewed as more public spaces. Over all,
although most users weren’t entirely sure how they would
use bulletin boards or tabs, by the end of the test period
most users felt both elements were useful and should be
retained.

Emergent Usage Practices
The week to two weeks during which the Awareness and
Net Weavers Loops have been in use is too brief to see the
formation of any usage norms. However users conducted
some interesting experiments which we describe here, along
with usage practices that are evolving in our own use.

Figure 5 shows two uses of tabs, one from the Net
Weavers’ Loop (foreground), and the other from the Lab
Loop. In the Net Weavers example, one user (‘Bob’) created
a tab and reflected out loud on what it was for. Another
user adds material (speaking in the third person to signal
that this is his addition) and goes on (not shown) to
propose a collaborative writing effort, composing group
poetry (a game played —typically with limericks — in the
Net Weavers’ Babble. The example in the background is
from the Lab Loop, and illustrates an interesting attempt at
doing collective composition. Here, the text being
composed is written in the tab (where it can be edited by
anyone), and the conversation pane is used as a question
and answer area. Whether this use will catch on remains to
be seen, but it is a nice example of a mode of use
unexpected when the element was designed. In the Lab

Loop tabs are also used in ways that were anticipated (for
example, figures 3 and 4 show uses of tabs for holding
common reference information such as a conference call
number and group member’s travel schedule).

Figure 6 shows two different uses of bulletin boards. The
superimposed picture shows the first uses of bulletin
boards in the Net Weavers Test Drive. The bulletin board
on the left shows a character graphics sketch created by one
user, and the one on the right applauds the feature as a
“Wiki Area,” although users soon discovered that the
bulletin board lacked the undo features of Wikis). The
bulletin board in the background picture is from the Lab
Loop, and shows an example of an unexpected use that has
developed into a norm: the use of the bulletin board to

Figure 5. Two uses of tabs: (a) collaborative writing from the Net Weavers Test Drive (below and front)
(b) text development in a tab, using the conversation as a question and answer are, from the Lap Lop (above and behind).

Figure 6. Bulletin Board uses: (a) character graphics
art and public comments (the Net Weavers Loop,
right and front); (b) voting and announcements (the
Lab Loop, left and behind);

propose and vote on possible meeting times; this particular
instance started out with just numbers, and then another
user began using pluses to indicate preference. In other
instances of this sort of behavior, users use their initials to
vote (shown in the lower portion of the bulletin board), or
otherwise indicate preferences. Since bulletin boards do not
track who enters or edits which text, this sort of use
requires a significant amount of trust among group
members. A use of the bulletin board more in line with
what was originally intended is shown in the middle
portion of the board, which contains a reminder about a
conference call (and a tab — not shown — just to the left
of the bulletin board contains the conference call number
and access code).

Other Experience
We’d like to conclude this section by noting that user input
was not limited to complaints about problems, expressions

of preference, or even novel use of
design elements. Users of both
Loops discussed a number of issues
that will contribute to future design
work. These included debates about
how to support ‘threads,’ the
desirability (or not) of being able to
participate in multiple
conversations simultaneously, and
the ways in which the Loops
conversation model felt different
from that of other applications.
Similarly, users not only critiqued
the existing design, but generated
new ideas, one of the more
promising of which is shown in
figure 7, a design showing one way
of merging the Social Proxy, the
User List and the Places List.

CLOSING REMARKS
Babble and Loops have similarities to a several existing
types of systems. On the surface, they bear a strong
resemblance to multi-channel chat systems (e.g. [12]), with
their transcript of (potentially) real time conversation, and
their lightweight conversation model (just start typing).
However, below the surface, the conversation model bears a
stronger resemblance to traditional bulletin board or
asynchronous discussion systems, in that the conversation
persists over sessions, and may be carried on
asynchronously. And, on top of all this, Babble and Loops
provide visual cues about the social context of user
interactions, an approach which has been explored by
Donath and her colleagues (e.g. [4, 11]), Sack [8], Smith
[10] and many others.

In yet another sense (and in our opinion this is the closest
fit), Babble and Loops resemble MUDs and MOOs (e.g.
[2, 9]) in that they provide a set of ‘rooms’ that persist over
time, and through which users move. Babble was, from
this point view, almost the inverse of a MOO: whereas
MOOs provide a persistent frame of (textual) rooms and
artifacts within which ephemeral chat occurs, Babble
provides a minimal frame of rooms (category and topic

names only) within which persistent chat occurs. From this
perspective, our design trajectory from Babble to Loops is
essentially making Loops more MOO-like by providing
artifacts like tabs and bulletin boards which permit the
creation of persistent textual features for rooms. Given that
this direction proves valuable — and we are encouraged by
our initial experiences — we intend to continue in this
direction, developing Loops rooms that have more internal
structure to them, and expanding the range of artifacts
within rooms, and integrating their presence and use with
our visual awareness mechanisms.

REFERENCES
1. Bradner, E., Kellogg, W, & Erickson, T. (1999) The

Adoption and Use of Babble: A Field Study of Chat in
the Workplace. The Proceedings of ECSCW .

2. Bruckman, A. & Resnick, M. (1995). The
MEDIAMOO project: Constructionism and professional
community. In Convergence, 1:1, 1995.

3. Cherny, L. Conversation and Community: Chat in a
Virtual World. Palo Alto: CSLI Publications, 1999.

4. Donath, J., Karahalios, K., & Viegas, F. (1999).
Visualizing conversation. Proceedings of HICSS-32,
Maui, HI, January 5-8, 1999.

5. Erickson, T. and Kellogg, W. (2000) Social
Translucence: An Approach to Designing Systems that
Mesh with Social Processes. Transactions on
Computer-Human Interaction. Vol. 7, No. 1, pp 59-83.
New York: ACM Press.

6. Erickson, T. Smith, D. N., Kellogg, W. A., Laff, M.
R., Richards, J. T., and Bradner, E. (1999) Socially
Translucent Systems: Social Proxies, Persistent
Conversation, and the Design of ‘Babble.’ The
Proceedings of CHI '99. ACM Press.

7. Houde , S. and Sellman, R. (1994) In search of design
principles for programming environments. Human
Factors in Computing Systems: The Proceedings of
CHI ‘94, pp. 424-430. New York: ACM Press.

8. Sack W. (2000) Discourse Diagrams: Interface Design
for Very Large Scale Conversations. Proceedings of
HICSS33s, January 4-7, 2000.

9. Schlager, M., Fusco, J., & Schank, P. (1998).
Cornerstones for an on-line community of education
professionals. IEEE Technology and Society Magazine,
17(4), 15-21/40.

10. Smith, M and Fiore, A. (2001) “Visualization
Components for Persistent Conversations.”
Proceedings of CHI 2001. ACM Press.

11. Viegas, F.B. and Donath, J. Chat Circles. (1999)
Human Factors in Computing Systemss: The
Proceedings of CHI 99, pp 9-16, ACM Press.

12. Werry, C. C. (1996). Linguistic and interactional
features of Internet Relay Chat. In S. Herring (Ed.),
Computer-mediated communication: Linguistic, social
and cross-cultural perspectives. Amsterdam: John
Bemjamins, pp. 47-63

Figure 7. A design
idea for merging the
social proxy, user
and places lists from
a Net Weavers
participant.

