
Loops: Designing A Web-Based Environment
for Persistent, Semi-Structured Conversation

Thomas Erickson, Christine Halverson, Wendy Kellogg, Mark Laff, Peter Malkin, Tracee Wolf
IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598, USA

+1 914 784-7826
{snowfall|krys|wkellogg|mrl|malkin|tlwolf}@us.ibm.com

ABSTRACT
We describe the design of Loops, a second-generation
CMC system aimed at small to medium-sized groups in a
corporate environment. One goal of Loops was to preserve
the lightweight conversation and awareness model
developed in Babble. Creating this sort of environment on
the web, a stateless and asynchronous medium, posed both
design and implementation challenges. A second goal of
Loops was to provide mechanisms for allowing users to
impose structure on both static text and ongoing
conversation. We discuss our approach—a server that uses
TCP/IP-based XML communication to drive a client—and
discuss the resulting system’s architecture and interface.

Keywords
Design, CMC, Chat, Conversation, Structure, Semi-
Structured Conversation, Social Proxies, Awareness

INTRODUCTION
Our chief goal is to design “socially translucent” systems
— systems that convey social information and context by
providing visual cues about the presence and activity of
participants. We argue that such systems can, by taking
advantage of the human ability to make inferences from
traces of activity, provide an environment that supports a
wide range of social processes (e.g. imitation; peer
pressure) which permit groups to function effectively.

Up to this point, our work has been embodied in a first-
generation system called “Babble.” Babble is an online,
conversation-centric system designed to support small to
medium-size workgroups. In a series of publications we’ve
described the design of the system [4], the “social
translucence” rationale behind it [3], and studies of
deployments and adoption of the system. In most of this
work we have kept the focus on the socially translucent
aspects of Babble, that is, the features which support
participants’ awareness of one another (and their awareness
of that awareness).

This paper builds upon this previous research, but opens up
two new areas of discussion. First, we describe the design
and implementation of the second generation system,
Loops. Although the goals of Loops are similar to
Babble’s, the implementation is radically different,
involving a shift from client-server Smalltalk applications
to a web-based system with a server driving a client written
in Flash™ from Macromedia™*. Because of the stateless,
asynchronous nature of the web, it as not easy to preserve
the socially translucent aspects of Loops.

The second new area has to do with the issue of structure.
In terms of design, one of the main ways in which Loops
differs from Babble is that it incorporates interface elements
intended to provide its users with lightweight means of
structuring information. This emphasis on structure stems
from observations of the very considerable efforts that
users devoted to structuring information. Thus, as we
discuss the rationale for the design of Loops, we will focus
primarily on the evidence related to the creation and use of
structure, since we have thoroughly discussed awareness
and social translucence in other venues.

This paper begins by providing background on the design
context in general, and the Babble system in particular. In
the next section we lay out the factors that shaped the
design of Loops; we devote particular attention to
examining how users constructed structures within the
weakly-structured Babble environment. In the third section
we describe the architecture and user interface of Loops.
Next we discuss work, still underway, that draws upon the
Loops architecture and interface to provide scaffolds for
semi-structured conversations. We close with reflections on
the relationship between design and research.

BACKGROUND
Before turning to the factors which specifically drove the
design of Loops, we’ll say a bit about the context in which
development occurred. Here we describe the position and
role of the development group, the general situations for
which we were designing, and the nature and use of the
first generation system to which Loops was a response.

* Macromedia is a registered trademark, and Flash is a

trademark of Macromedia Inc.

DRAFT - Do not circulate without express permission.

©Copyright 2001 IBM Corp. All rights reserved.

Design Research
In understanding the various forces that shaped the design
of Loops, a good place to begin is with the context in
which the design takes place. Our group is situated in ALC
Research, and our charter is to carry out “adventurous
research,” that is, research that does not necessarily play
into ALC’s product development strategies.

Our work is best described by the rubric “design research.”
We conduct our research by embodying a variety of claims
or conjectures in design prototypes, and then seeing how
they play out that context. While some of this work may
involve various forms of reflection and critique familiar to
designers (see Schon [8] for a good description and
rationale), or the genre of ‘user studies’ most familiar to
HCI audiences, most of our work proceeds via the creation,
implementation, and deployment of working systems to
actual workgroups. This is a natural outcome of our interest
in supporting social processes: group-based activity takes
weeks to months to coalesce, and the only effective way we
see of studying it is to observe it ‘in the wild.’

This, in turn, means that even though we are engaged in
“adventurous research,” we need to construct systems which
are sufficiently robust that they can be deployed to other
workgroups. Ideally, as has been the case with Babble, the
system will not only be robust, but will be sufficiently
attractive to entice a number of groups into using the
system. And this, in its turn, means that the ability to
easily deploy and update the system is critical—something
which became an important factor in the design of Loops.

The Babble System
Our first generation system, a Smalltalk-based client and
server system, was called Babble. Here we provide a very
brief description of it; interested readers should see [4] for
more details of its design.

Babble was designed to serve the needs of small to
medium sized corporate groups. It was intended to provide
a semi-private online conversation area where members of
groups such as workgroups, committees, and special
purpose task forces could have text-based synchronous or
asynchronous conversations. Among the assumptions
embodied in Babble were that the groups would be
relatively small, that most participants would know one
another or of one another, and that, because participants
were identified and situated in an organizational context,
there would be considerable pressure to behave responsibly.
Babble’s approach to supporting conversation involves
providing visual cues about the social context of the
interaction (see [2] and [7] for examples of other systems).

Figure 1 shows a screenshot of the Babble user interface.
From the upper left its basic components are: the list of
users who are currently logged on; a visualization of the
presence and degree of activity of users called a social
proxy; a hierarchical topic list of user-definable
conversations; and, in the lower half of the window, the
text of the current conversation. There are three things to
note. First, although Babble resembles a chat system, the
conversation in Babble may be synchronous or
asynchronous: that is, remarks may be separated by seconds

or by minutes, days or months. Second, Babble provides a
number of cues about who is present and what is new. The
social proxy in the upper middle pane shows not only who
is in the current conversation (the dots within the circle),
but how recently the participants have ‘spoken’, i.e. typed,
or ‘listened’, i.e. clicked or scrolled (via the proximity of
the marbles to the circle’s center). The topic list in the
upper right pane has ‘mini-proxies’ next to a conversation
name if anyone is in it (e.g. the third topic), and displays
the topic name in red if it contains material the user hasn’t
seen. The third point to note is that the topic list is user
definable: that is, users can create new conversation topics,
rename them, and organize them hierarchically in nested
categories — we will examine examples of such
organization when we turn to the issue of structure.

Babble Deployments
Over the past four years we have deployed Babble to about
two dozen groups. Most, though not all, deployments have
been within ALC to groups such as official (i.e.
organizationally defined) work groups, ad hoc task forces,
and special interest groups. Most deployments have been
intended to provide environments for long term
collaboration, although some have been deployed to
support shorter term online events (ranging from three days
to a month or so).

Our success in deploying Babble has been mixed. Initially,
we had limited success in getting groups to use Babble for
lengthy periods of time. Although almost all groups
initially used Babble enthusiastically, usage often fell off
after about six weeks (see [1]). Over time, based on our
observations of successful deployments, we developed a
screening process, advice for moderators, and suggestions
for new users, that appear to have increased the rate of
successful adoption. In the last six months, the primary
diffusion of new Babbles has been viral: that is, a member
of an existing Babble requests a new deployment to
support some other group in which he or she participates
and takes charge of launching and moderating it; in these
cases the presence of one or more experienced ‘Babblers’
seems very beneficial to adoption.

Figure 1. The Babble user interface.

FACTORS THAT SHAPED LOOPS
The design of Loops was shaped by three factors:
deployment logistics; the desire to retain the most
successful features of Babble; and the desire to support the
creation structure within the online environment.

Deployment Logistics
As already noted, the ability to successfully create and
deploy working systems to groups is critical to the success
of our design research approach. This is particularly true if
the system turns out to be popular, as has Babble.

Babble was not easy to deploy. The client, written in
Smalltalk, was 2 to 3 megabytes in size. This meant that
installation was non-trivial: users had to run an installation
package that they usually downloaded from the network.
The drawback is that this leaves the timing of the install up
to individuals, and thus installation in most groups was
staggered across several days. This made it more likely that
those who installed Babble right away would log on and,
finding no one to talk to, be uninclined to return.

Because Babble was a research prototype, it changed over
time. This lead to the problem of trying to maintain
compatibility across versions. Considerable efforts — in
both programming and testing — were made to make sure
that changes to the server or client did not break older
versions of the client. However, incompatibilities did arise,
sometimes by accident, and sometimes due to the desire to
add new functionality that required fundamental changes.
When this happened, all users need to reinstall more or less
simultaneously, or lose access to the Babble environment
when the server changed or incompatible clients came on
line. The first case was difficult to manage for the reasons
already mentioned; the second disruptive to group usage.

A third problem arose when trying to deploy to tightly
administered environments. For example, one deployment
of Babble was to a University class, which meant that
Babble needed to be available in the public University
computer labs. However, the lab administrators were wary
of installing ‘experimental’ software on their lab machines,
fearing that it might crash, corrupt disks, or have
infelicitous interactions with other software. This particular
problem was solved by creating a version of Babble that
ran off a CD-ROM and kept its user-specific files on a
diskette — however, this was not really a viable long term
solution, and it exacerbated the update problem by
requiring the burning of new CDs. While deploying to a
public lab is a special case, note that similar concerns arise
in most mission critical environments, such as help desks,
sales support operations, etc., as well as any environment
where hardware and software support is centrally controlled.

In considering the next generation design, each of these
problems pushed us in the direction of developing a web-
based client that could be run within a standard browser.
Such a solution addresses the deployment problems, which
are inherent in the design research approach we’re pursuing,
as well as making it easier to support multiple hardware
and OS platforms, and people using multiple machines.
However, we were rather reluctant to pursue this approach,
because of the issues we discuss in the next section.

Retaining and Enhancing What Worked
Our experience with and studies of Babble left us
convinced that it got quite a few things right. The principle
features of Babble that we wished to retain were:
• The lightweight, blended synchrony, just-start-typing

conversation model.
• The social proxy and other features that created an

awareness of participants’ presence and activity.
• The sense of history and inhabitation that resulted

from the persistence of conversation and other signs of
activity over time.

One of our concerns was that our emphasis on synchrony,
awareness, presence, and inhabitation might prove difficult
in an environment that was fundamentally asynchronous
and lacked any concept of state. That is, whereas the
Babble clients maintain a continuous connection to the
server, web browsers do not: they connect with the server
only to send or receive information. It was not immediately
clear to us how to maintain the feeling of presence (i.e. that
users are continuously connected to the environment), and
we were concerned that we might end up trying to maintain
an illusion with no infrastructural means of support.

In addition to these infrastructure concerns, we were also
interested in creating an engaging user experience. We had
two goals. First, we wanted freedom to use a range of
subtle visual and auditory effects in designing successors
to the Babble social proxies. Second, we wanted to allow
our interaction designer to directly work in the medium,
rather than having design prototypes reinterpreted by a
programmer. As noted by Houde and Sellman [6], most
development environments do a good job of supporting
design or programming, but not both. Although we
explored alternatives, these user experience goals eventually
lead us to build the Loops client in Macromedia’s Flash 5,
an environment well-known for its ability to support the
creation of interactive animations that can play in browsers.

Supporting Structure
As already described, we have considerable experience in
deploying Babble. While we have discussed many aspects
of our studies elsewhere, we have said little about how
users have actually turned Babble to their own ends. In this
section, we examine some of the ways in which Babble
users have structured information within Babble to support
their needs. We consider this structuring quite significant
because Babble provides only rudimentary support for it.

To begin with, we need to say a bit more about how
structure is created in Babble. Basically, Babble allows any
user to create or rename the topics and categories shown in
the hierarchical topics list (Figure 3, upper right). Topics
are simply names for single conversations (analogous to
documents in a GUI-sense), and categories are a means of
grouping conversations (analogous to folders) which can
contain topics or sub-categories. The only way to create
structure in Babble is by creating named hierarchies of
categories and topics.

For the purpose of this paper, we will look at data drawn
from the five most active current Babble deployments (see
Table 1 for a summary). It is important to note that the

explicit analysis we present here did not drive the design; it
is really to persuade the reader. Having spent years
watching the users of dozens of Babbles structure and re-
structure their environments, the conclusions drawn from
this data were already evident to us.

Perhaps the most obvious feature of these Babble
deployments are the number of categories and topics and
categories in evidence. The number of user-created topics
and categories per Babble ranges from 62 to 170, with the
average being 129 (these counts exclude automatic archives
of conversations generated by the system, and topics and
categories that users deleted). When one considers that there
are a relatively small number of regular, active users who
contribute to conversations (typically 10 to 20, but around
30 for B1), this is quite a lot. Why is this happening?

What we see when we look at the lists of categories and
topics is that quite a bit of the structure which has been
generated is for presenting and organizing static
information. That is, conversation topics are often not used
for conversation. Instead, what we see is that users are
trying to create meaningful structures which, while they
often contain niches for conversation, are larger in scope.

Table 1 summarizes a few of the most common structure
types observed across Babbles. These include personal
places (places ‘owned’ by a particular user), structures
designed to support events (e.g. an upcoming conference)
or projects, and places for announcements. Note that the
counts shown in Table 1 are quite conservative; they reflect
only existing structure (not structure created and later
deleted by users), and only structures that are named so that
an outsider can recognize their purpose.

The most prevalent form of structure is what we will refer
to as an ‘office’. Offices are topics, or, most often,
hierarchies of categories and topics, that ‘belong to’ and are
named after a user. The third row of table 1 shows the
number of distinct offices in each Babble (the top number),
the total number of topics and categories devoted to offices
(the second number), and the percentage of structure in that
deployment that is devoted to offices. As Table 1 shows,
offices comprise from one to three quarters of the structure
(i.e. number of category names and topic names) in these
Babble deployments. A common form for an office is:

Pat’s Place
About Me
Talk with Me

the first item being a category, and the next two items
being topics contained within it. The first topic is typically
intended to contain a profile of the person, and the second
as a place for conversation.

The event and project structures shown in row 4 are similar
offices, in that the distinguish between topics intended for
conversation and topics for information, although they
typically contain much more structure. For example, one
Babble uses project names as categories, and underneath the
project name uses topics with names like “Current status”,
“Meet the project members”, and “Tell us what you
think!” In general, this approach, of using some topics to
contain static information, and designating particular topics

as specially for conversation, occurs across all Babble
deployments for a variety of different types of structures.

Another structural feature found in most Babble
deployments is the attempt to explicitly or implicitly create
one or more topics or categories for announcements (row 5
of Table 1). Most often these are named “Announcements,”
since that results in them appearing at or near the top of the
alphabetically sorted topic list; other examples are “Heads
Up!,” “News,” and special purpose announcements like
“Kittens Free to a Good Home!” (However, most
announcement structures do not seem successful, judging
by their degree of use; one of the moderators reports that
people wouldn’t come to the announcements topic quickly
enough, and so he shifted to posting announcements in a
topic where most participants in that Babble ‘hung out.’)

To summarize, throughout the various deployments it is
clear that users are doing more than creating places to talk.
First, they are trying to display static information in a
readily accessible way. Thus, they resort to using topic
names to signal whether the topic is supposed to be a place
for conversation (e.g. “Talk to me!” “Questions,” “Chit-
chat,” “Discuss <Project Name> Here”), or whether it is
primarily informational (“About Me,” “<Project Name>
Status,” “About”). Second, users are trying to make certain
types of information visible. The most obvious example of
this is the “Announcements” topic, which, by virtue of its
name, appears at the top of the alphabetically sorted list.
More generally, all five Babble deployments exhibit
attempts to structure topics within particular categories by
using numbers or punctuation characters as prefixes to
control their sorting order (most often trying to put
informational topics first in the list as with “-Where to
Start”). Both the desire to display structured static
information, and the desire to control the visibility of
information, are taken up in the design of Loops.

LOOPS: THE WORKING SYSTEM
Thus far we’ve described our overall goals, the design
context, and the factors which shaped the design of the new
system. In this section we describe the resulting system.
Currentlly, all the major functionality is implemented, and
it is being used by our group; we still have minor features
to add, and performance problems to resolve before it is
ready for distribution outside the group.

Conceptually, Loops consists of a set of user-definable
rooms, each of which can contain a conversation, tools,
documents, static text, and people. The basic user

B1 B2 B3 B4 B5

Months of use 10 6 6 6 5

Total structure in terms of
of topics + categories

141 147 170 62 126

of distinct ‘offices’
 Amount of structure (t+c)
 % of total structure

28
90
64%

47
109
74%

20
46
27%

15
38
62%

12
33
26%

distinct events/projects
 Amount of structure (t+c)

3
14

1
9

2
19

1
1

3
53

announcement topics
 Amount of structure (t+c)

1
1

0
0

2
2

2
2

3
3

Table 1. Summary of the use of structure — topics (t) and
categories (c) —in five active Babble deployments.

experience is that people connect to Loops server, and
move from room to room, reading conversations that have
changed in their absence, contributing new comments, and
encountering other users as they do so. As with Babble, the
ultimate goal is that Loops feel like an inhabited place, in
which users may ‘hang out’ during the day as they work on
their computers, or into which they may occasionally
venture to see what has happened in their absence.

The Architecture
Loops uses a client-server architecture, with the client and
server communicating via TCP/IP, with content coded in
XML. A server written in Java provides a persistent store;
the client is implemented in Macromedia’s Flash 5 and
runs in any standard web browser that supports the Flash
plug-in. The server maintains a list of ‘currently connected’
clients, the contents of the Loop’s conversations, and a log
of user activities used to drive the Loop’s social proxy and
other elements of the interface that show traces or results of
user activity. This architecture allows us to track user
location and activity within the conversation space (e.g.,
which conversation a user is ‘in’, how long since the user
visited or posted to a conversation, etc.), thus supporting
the user experience described in the next section.

Figure 2 illustrates how the architecture works. The story
begins with the user of client 1 entering a remark. The
client wraps the comment in XML (along with meta
information regarding the conversation it is being posted
to) and sends it to the server (e.g. the “Post_Item(text)”
request). Upon receipt, the server processes the request: it
verifies that the client has appropriate permissions, creates a
command by adding meta-information such as the
client_ID and time, and stores the command in its activity
log. Then, the server broadcasts the result to all connected
clients (e.g. the “I_Posted(client1,text,time)” command),
including the originating client. When the clients receive
the command from the server they act appropriately (in this
case, displaying the new comment in the conversation
window, and updating the social proxy to reflect client 1’s
activity).

This story is complicated by two factors. First, not all
users may be connected simultaneously. As shown in
Figure 2 (grey area), when Client 3 connects at a later time,
it issues a “Get_Activity” request to the server. The server
responds by sending it the activity and content for the
conversation that Client 3 is viewing (“I_Posted
(client1,text,time”)), which, in this example, is the same

conversation to which Client
1 originally posted. The
second complicating factor
has to do with the (common)
case in which all connected
users are not viewing the
same conversation. Thus,
suppose that Client 4 (not
shown) was present when
Client 1’s comment was
posted; but was viewing a
different conversation. In that
case, Client 4 would receive

the same I_Posted command that the server broadcast to
Clients 1 and 2, but would use it differently: Client 2
would update elements of its social proxy (e.g. those that
show the time of Client 1’s most recent activity), but
would do nothing with the comment itself, since it was
displaying a different conversation; instead, if and when it
switched into Client 1’s conversation, it would use
Get_Activity to obtain the contents.

The User Interface
We’ll begin with an overview of the general interface
elements of Loops. The basic features shown on the screen
layout (Figure 3) are, clockwise from the lower left:
• a conversation pane
• the social proxy (above), which provides cues about

the awareness and presence of others
• a bulletin board for editable static text (to the right);
• a room pallet (lower right) with a categorized list of

conversation rooms and tools for manipulating them;
• a user pallet (lower middle) containing a list of active

users and tools for manipulating user information

In this example, four people are connected, three of whom
are together in the “Commons Area”, the room being
shown. The particular elements of the “Commons Area”
room are the conversation pane (showing a segment of not-
quite-synchronous talk about producing slides for a
meeting), the social proxy (showing that three people are in
the room), and the bulletin board (containing reminders
about an upcoming group meeting and the ECSCW
conference). To the right of the conversation pane, the user
pallet shows that four people are connected to Loops as a
whole, and, to the right of that, the room pallet shows the
hierarchical structure of this conversation space (primarily
personal offices and a debugging topic), and provides
indications of where people are located (in this example we
can see that someone is in “Christine’s Office/Talk with
me” by the small icon to the left of the room name).

Awareness and Conversation
Because the awareness and conversation models were
transposed from Babble, we’ll cover them briefly.

The chief awareness interface element is the social proxy,
the circle in the upper left corner of Figure 3. The circle
represents the conversation being viewed, and the colored
dots (referred to as marbles) represent people. A marble
inside the circle means that a user is in the current
conversation; when users are active (meaning that either
they type or click) their marbles move to the inner ring of
the circle (as in Figure 3), and then, over the course of 15
minutes, they drift to the edge of the circle. Marbles shown
outside the circle represent users who are connected to
Loops, but are viewing different conversations.

Loops implements the lightweight type-and-post,
conversation-in-one-window model that Babble supported.
A user adds to a conversation by clicking on the speech
bubble icon in the lower right corner of the conversation
pane and typing into a moveable dialog box. This
arrangement, which differs from the standard chat/instant
messaging model, enables people to refer to the existing
conversation, or even to move to and copy from otherFigure 2. The Architecture

conversations, thus making it easier for participants to
compose reflective and synthetic responses. Once the user
posts the comment, it immediately appears in the
conversation. For users who are in other rooms (or who log
on later), the name of the room in the rooms pallet turns
red to indicate that there is new content.

Static Structure: Bulletin Boards and Tabs
As noted earlier, there was considerable evidence that
Babble users devoted a lot of effort to making information
accessible. In response to this, Loops provides two ways of
structuring static information: bulletin boards and tabs.

Bulletin boards (Figure 3, top middle to right) provide a
means for posting text in a highly visible place. Each room
has its own bulletin board, and its text may be edited by
anyone who has write permission for the room. When new
or changed text is posted to a bulletin board, the new text

is signaled to those in the
room by the background color
of the bulletin board fading
out and then fading back in
with the new text displayed.
We anticipate that bulletin
boards will be used for
purposes ranging from
announcements and reminders
to scene setting (e.g. “You see
a messy office.”), based on
observations of and comments
from Babble users.

The other means for making
information readily available
is the tab. Each room has its
own tab, which peeks out
from behind the conversation
pane. Clicking on the tab

causes it to slide out (Figure 4), revealing the (editable)
information on it; a second click provides access to
controls for setting the background color, editing the tab
title and heading, and adding and removing additional tabs.
We expect that tabs will be used for activities such as
sharing lists of URLs, schedules, and keeping to do lists.

One role that we expect both bulletin boards and tabs will
play is to visually distinguish rooms from one another. In
Babble, rooms looked almost identical; in Loops, the text
in the bulletin board, and the number, colors and names of
tabs will make rooms feel different from one another.

SEMI-STRUCTURED CONVERSATION
The previous section describes the working version of
Loops that we are using as of the time of writing.
Essentially, this version of Loops supports general purpose
online conversations, albeit with mechanisms for
customizing certain static elements of rooms. In this
section we describe current development work, which uses
the architecture and interaction mechanisms to provide
‘scaffolding’ semi-structured conversations.

Our interest in supporting semi-structured conversations
comes from our observations of various uses of Babble.
For example, in the Babble deployments previously
described, there are many examples of efforts to enact
particular types of conversations such as interviews,
meetings, and brainstorming sessions. In fact, in response
to requests, we deployed three Babble’s to support short
term events (e.g. a month long online brainstorming
session), rather than the longer duration deployments for
which we designed it.

There is, of course, a long history of work in HCI that has
to do with supporting various types of structure in
conversation. This includes research on workflow,
structured hypertext, design rationale, and, most recently,
threaded chat [7]. Our approach differs from most of these,Figure 4. An opened tab.

Figure 4. The Loops User Interface

in that it tries to support semi-structured interaction
primarily by creating a mutual awareness among
participants of who is doing what, thus permitting self-
organization.

The Rationale
The basic idea is to provide support for a structured process
without forcing individuals to work in lockstep with one
another or to proceed through a particular process without
deviation. The strategy that we follow is to create a visual
analog of the conversational structure within which people
may work. However, rather than trying to build constraints
on their actions or interactions into the system, instead, we
make the activities of the participants visible to one
another. That is, we hope to use social pressures to allow
people to interact coherently with one another, rather than
trying to enforce a particular interaction pattern via hard-
wired technical constraints. Or, to use an analogy, when a
person is giving a presentation to a co-located meeting, we
do not gag the other participants to keep them from
speaking, nor do we lock the door to prevent them from
leaving; instead, we rely on social norms and the fact that
individuals’ behaviors are visible and audible to all
participants. Because everyone has the option to interrupt
or walk out, it means something when people refrain; and
because social norms and pressures are in play, it also
means something when people interrupt or walk out.

The Working Prototype
The interface shown in Figure 5 is a partially implemented
working prototype1 designed to support such an approach.
Because this is exploratory work, we begin by designing to
support a particular type of conversation that we know to
be of interest to potential users. Should the approach work,

1 If this seems an odd phrase, note that our prototyping and

implementation environment, Flash, are the same. Thus, the
details of the interaction design are worked out; what
remains is the work of ‘wiring up’ the server so that it can
drive the Flash visualizations. The screenshot shown in
Figure 5 is a running version shown in the process of being
used; however only some elements of participants behavior
is reflected in the proxy.

we would then look at ways of generalizing it, either by
providing a set of templates for conversation types, or
perhaps by designing a scripting language for semi-
structured interactions (as has been done in [7]).

Figure 5 shows a Loops semi-structured conversation room
that supports a five stage brainstorming process. This room
differs from a normal Loops room in two obvious ways:
first, the social proxy has grown larger, containing
elements that represent each of the process’ stages; second,
the conversation pane has grown, and is flanked on either
side by ‘capture panes’, that is, editable text areas which are
used to capture key items that persist across stages. This
expansion has eliminated the general purpose features of
rooms — the bulletin board, tabs, and the user and room
palettes — in favor of items which support brainstorming.

To describe the way the prototype works, we’ll start off by
summarizing the brainstorming process which it supports
(obviously, there are many different forms of
brainstorming), and then discuss the prototype as it is used
to move through the process. The process supported in the
prototype is straightforward: discuss the goals; generate
ideas in a non-critical mode; codify and elaborate ideas;
critique and rank ideas; archive the results. The prototype
works by providing a ‘sub-room’ for each of the five
stages, and static text areas to either side of conversation
pane to capture products of the discussion to be carried on
to future stages.

The idea is that participants gather in the first room to
discuss the goals; the result of this discussion is a list of
agreed upon goals which are posted in the “Goals” area to
the left so that they can be referred to in future stages. Once
this is done, the group shifts to the second stage. However,
we do not enforce this model in the system; participants
can, in fact, move back and forth among stages regardless
of where the group’s focus currently is.

Instead, by making the location and activities of
participants visible across the entire process, we aim to
allow social pressures to encourage coordinated action. We
do this in the following way: When a person moves from
one stage to another, their marble animates and moves to
the appropriate circle in the proxy (i.e. circle 2) above.
From the movers point of view, the stage 1 subroom
shrinks, and the newly entered stage 2 room expands so
that it can show the fine structure of interaction within it;
from the viewpoints of the other participants who are still
in the stage 1 sub-room, the mover’s marble moves into
sub-room 2, which remains in its minimal state. Thus, if
people are acting in a coordinated fashion, all participants
ought to see a general movement of marbles between the
stage 1 and stage 2 subrooms. On the other hand, it may be
that some of the group moves, and two or three members
remain behind; since the proxy makes this situation
visible, it can serve as a sign that perhaps more work (or at
least negotiation) is needed. In summary, this allows
people to see where others are and make inferences about
what they are doing. By making collective activity visible
(as well as deviations from it), we hope to enable a group
to act coherently (either by working together, or by

Figure 5. Design for a semi-structured ‘Brainstorming’
conversation in Loops.

recognizing when it may be necessary or useful to relax the
expectation of simultaneous collective activity).

So far, we’ve seen that making the sub-room(s) inhabited
by participants visible, serves as a signal about what
stage(s) of the process is being focused on. In addition, the
proxy will also reflect where new information has appeared
(via the background of a sub-room changing color), so that
we can distinguish between (for example), participants
returning to a previous stage to refer to something, and
people returning to a previous stage to add more
information, the latter being likely to attract more
attention. This second mechanism is important because a
Loops brainstorming room need not be used only in
synchronous mode. That is, it might be useful for a group
(either because of scheduling difficulties, or because the
group is scattered across time zones around the world, as is
not uncommon in ALC task forces and ad hoc groups), to
conduct an asynchronous brainstorming process. One might
devote one day to each stage, so that participants checking
in on Wednesday (i.e. stage 3, ‘Idea Codification and
Elaboration’), might notice that there was activity in stage
2 that had occurred since their last visit on Tuesday, or
even that there was stage 1 activity where someone might
have suggested expanding the set of goals.

We have a variety of other features working at the
interaction design level. These include tools to support
activity in various stages (for example, an ‘idea counter’ for
the idea generation phase, and a voting mechanism for the
ranking stage), and other indicators to enhance awareness of
activity elsewhere. However we’ll defer discussion of those
features since our primary aim was to show how the
exploratory work follows from our goals and leverages the
architectural and UI work that we’ve already implemented.

CLOSING REMARKS
While we have framed this paper in practical terms — as an
attempt to support coherent, online interaction among work
groups — it can also be seen quite differently. From
another direction, our program of design research may be
seen as exploring, in situ, the implications of various
programs of anthropological and sociological research so
beautifully pulled together in Lucy Suchman’s Plans and
Situated Actions[9]. Suchman argues against the notion
that behavior is planned, i.e. that abstract cognitive plans
serve as the origin of and controlling structure for behavior.
Instead, she argues that behavior emerges from local
interactions between the actor and the details of the
particular situation, and that the role of plans is to serve as
a resource for behavior, just as maps help travelers
determine, but do not control, their paths.

In the case of Babble and Loops, the social proxies we’ve
designed, and the conversational ‘scaffolding’ we described
in the previous section, are attempts to make abstract
representations concrete, so that they may better serve as
resources for collective behavior (other research programs,
for example those of Donath and her colleagues [2], and
Sack [00] may also be seen in this light). By making
abstract structures visible, by allowing people to inhabit
them and move within in them, and by enabling people to

see and discuss one another’s positions within the
structures, our goal is to provide a texture of visible and
audible cues to which inhabitants may react, and around
which they may orient their behavior. Because we have yet
to see how Loops fares in deployment, and thus in what
ways the inhabitants of Loops make use of the inhabited
visualizations that we’ve described here, we have focused
on describing this work in terms of its instrumental and
practical goals. Nevertheless, we want to emphasize that
our work not only draws upon research, but has the
potential to address questions of fundamental interest to
researchers. We think it apropos to close with the final
sentence from Plans and Situated Actions: “Just as the
project of building intelligent artifacts has been enlisted in
the service of a theory of mind, the attempt to build
interactive artifacts, taken seriously, could contribute much
to an account of situated human action and shared
understanding. [9, p 189].”

REFERENCES
1. Bradner, E., Kellogg, W, & Erickson, T. The Adoption

and Use of Babble: A Field Study of Chat in the
Workplace. The Proceedings of the European Computer
Supported Cooperative Work Conference. 1999.

2. Donath, J., Karahalios, K., & Viegas, F. (1999).
Visualizing conversation. Proceedings of HICSS-32,
Maui, HI, January 5-8, 1999.

3. Erickson, T. and Kellogg, W. Social Translucence: An
Approach to Designing Systems that Mesh with Social
Processes. Transactions on Computer-Human
Interaction. Vol. 7, No. 1, pp 59-83. New York: ACM
Press, 2000.

4. Erickson, T. Smith, D. N., Kellogg, W. A., Laff, M.
R., Richards, J. T., and Bradner, E. Socially
Translucent Systems: Social Proxies, Persistent
Conversation, and the Design of ‘Babble.’ Human
Factors in Computing Systems: The Proceedings of
CHI '99. ACM Press, 1999.

5. Farnham, S., Chesley, H.R., McGhee, D.
E., Kawal, R. and Landau, J. Structured online
interactions: improving the decision-making of small
discussion groups; Proceedings of the ACM 2000
Conference on Computer supported cooperative work,
2000, Pages 299 - 308

6. Houde , S. and Sellman, R. In search of design
principles for programming environments. Human
Factors in Computing Systems: The Proceedings of
CHI ‘94, pp. 424-430. New York: ACM Press, 1994.

7. Sack W., Discourse Diagrams: Interface Design for Very
Large Scale Conversations. Proceedings of HICSS - 33rd

Annual Hawaii International conference on Systems
Sciences, January 4-7, 2000

8. Schön, D. A. Educating the Reflective Practitioner. San
Francisco: Jossey-Bass, 1987.

9. Suchman, L. Plans and Situated Actions: The problem
of human machine communication. Cambridge:
Cambridge University Press, 1987.

